
Pacemaker 1.0

Configuration Explained
An A-Z guide to Pacemaker's Configuration Options

Pacemaker

Andrew Beekhof

Configuration Explained

Pacemaker 1.0 Configuration Explained
An A-Z guide to Pacemaker's Configuration Options
Edition 1

Author Andrew Beekhof andrew@beekhof.net

Copyright © 2009 Andrew Beekhof.

The text of and illustrations in this document are licensed under a Creative Commons Attribution–
Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://
creativecommons.org/licenses/by-sa/3.0/.

In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide
the URL for the original version.

In addition to the requirements of this license, the following activities are looked upon favorably:
1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email

notification to the authors of your intent to redistribute at least thirty days before your manuscript
or media freeze, to give the authors time to provide updated documents. This notification should
describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or
else described in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free copy
of any hardcopy or CD-ROM expression of the author(s) work.

The purpose of this document is to definitively explain the concepts used to configure Pacemaker. To
achieve this best, it will focus exclusively on the XML syntax used to configure the CIB.

For those that are allergic to XML, Pacemaker comes with a cluster shell and a Python based GUI
exists, however these tools will not be covered at all in this document 1, precisely because they hide
the XML.

Additionally, this document is NOT a step-by-step how-to guide for configuring a specific clustering
scenario. Although such guides exist, the purpose of this document is to provide an understanding of
the building blocks that can be used to construct any type of Pacemaker cluster.

It is hoped however, that having understood the concepts explained here, that the functionality of these tools will also be more
readily understood.

mailto:andrew@beekhof.net
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

iii

Table of Contents
Preface xiii

1. Document Conventions ... xiii
1.1. Typographic Conventions .. xiii
1.2. Pull-quote Conventions ... xv
1.3. Notes and Warnings ... xv

2. We Need Feedback! ... xvi

1. Read-Me-First 1
1.1. The Scope of this Document ... 1
1.2. What Is Pacemaker? .. 1
1.3. Types of Pacemaker Clusters ... 2
1.4. Pacemaker Architecture .. 4

1.4.1. Internal Components .. 6

2. Configuration Basics 9
2.1. Configuration Layout .. 9
2.2. The Current State of the Cluster ... 10
2.3. How Should the Configuration be Updated? ... 11
2.4. Quickly Deleting Part of the Configuration .. 12
2.5. Updating the Configuration Without Using XML .. 12
2.6. Making Configuration Changes in a Sandbox ... 13
2.7. Testing Your Configuration Changes .. 14
2.8. Do I Need to Update the Configuration on all Cluster Nodes? .. 17

3. Cluster Options 19
3.1. Special Options .. 19

3.1.1. Configuration Version ... 19
3.1.2. Other Fields .. 19
3.1.3. Fields Maintained by the Cluster ... 20

3.2. Cluster Options .. 20
3.2.1. Available Cluster Options ... 21
3.2.2. Querying and Setting Cluster Options ... 22
3.2.3. When Options are Listed More Than Once .. 23

4. Cluster Nodes 25
4.1. Defining a Cluster Node ... 25
4.2. Describing a Cluster Node .. 25
4.3. Adding a New Cluster Node ... 26

4.3.1. Corosync ... 26
4.3.2. Heartbeat .. 26

4.4. Removing a Cluster Node ... 26
4.4.1. Corosync ... 26
4.4.2. Heartbeat .. 27

4.5. Replacing a Cluster Node ... 27
4.5.1. Corosync ... 27
4.5.2. Heartbeat .. 27

5. Cluster Resources 29
5.1. What is a Cluster Resource .. 29
5.2. Supported Resource Classes .. 29

5.2.1. Open Cluster Framework ... 29

Configuration Explained

iv

5.2.2. Linux Standard Base ... 30
5.2.3. Legacy Heartbeat .. 30

5.3. Properties .. 30
5.4. Resource Options ... 32
5.5. Setting Global Defaults for Resource Options ... 33
5.6. Instance Attributes .. 33
5.7. Resource Operations .. 35

5.7.1. Monitoring Resources for Failure .. 35
5.8. Setting Global Defaults for Operations ... 36

5.8.1. When Resources Take a Long Time to Start/Stop .. 36
5.8.2. Multiple Monitor Operations .. 37
5.8.3. Disabling a Monitor Operation .. 37

6. Resource Constraints 39
6.1. Scores ... 39

6.1.1. Infinity Math .. 39
6.2. Deciding Which Nodes a Resource Can Run On .. 39

6.2.1. Options ... 40
6.2.2. Asymmetrical "Opt-In" Clusters ... 40
6.2.3. Symmetrical "Opt-Out" Clusters .. 40
6.2.4. What if Two Nodes Have the Same Score .. 41

6.3. Specifying the Order Resources Should Start/Stop In ... 41
6.3.1. Mandatory Ordering ... 41
6.3.2. Advisory Ordering .. 42

6.4. Placing Resources Relative to other Resources ... 42
6.4.1. Options ... 42
6.4.2. Mandatory Placement .. 43
6.4.3. Advisory Placement ... 43

6.5. Ordering Sets of Resources .. 44
6.6. Collocating Sets of Resources .. 46

7. Receiving Notification of Cluster Events 49
7.1. Configuring Email Notifications .. 49
7.2. Configuring SNMP Notifications ... 49

8. Rules 51
8.1. Node Attribute Expressions ... 51
8.2. Time/Date Based Expressions ... 52

8.2.1. Date Specifications .. 53
8.2.2. Durations .. 54

8.3. Using Rules to Determine Resource Location .. 55
8.3.1. Using score-attribute Instead of score ... 56

8.4. Using Rules to Control Resource Options .. 56
8.5. Using Rules to Control Cluster Options .. 57
8.6. Ensuring Time Based Rules Take Effect .. 58

9. Advanced Configuration 59
9.1. Connecting to the Cluster Configuration from a Remote Machine 59
9.2. Specifying When Recurring Actions are Performed ... 60
9.3. Moving Resources .. 60

9.3.1. Manual Intervention ... 60
9.3.2. Moving Resources Due to Failure ... 62
9.3.3. Moving Resources Due to Connectivity Changes ... 62

v

9.3.4. Resource Migration .. 65
9.4. Reusing Rules, Options and Sets of Operations ... 66
9.5. Reloading Services After a Definition Change .. 67

10. Advanced Resource Types 69
10.1. Groups - A Syntactic Shortcut ... 69

10.1.1. Properties .. 70
10.1.2. Options ... 70
10.1.3. Using Groups .. 70

10.2. Clones - Resources That Should be Active on Multiple Hosts 71
10.2.1. Properties .. 71
10.2.2. Options ... 72
10.2.3. Using Clones ... 72

10.3. Multi-state - Resources That Have Multiple Modes ... 75
10.3.1. Properties .. 75
10.3.2. Options ... 75
10.3.3. Using Multi-state Resources ... 76

11. Protecting Your Data - STONITH 83
11.1. Why You Need STONITH .. 83
11.2. What STONITH Device Should You Use .. 83
11.3. Configuring STONITH ... 83

11.3.1. Example .. 84

12. Status - Here be dragons 85
12.1. Node Status ... 85
12.2. Transient Node Attributes .. 86
12.3. Operation History ... 87

12.3.1. Simple Example ... 88
12.3.2. Complex Resource History Example ... 89

A. FAQ 91
Frequently Asked Questions .. 91

A.1. History ... 91
A.2. Setup .. 91

B. More About OCF Resource Agents 93
B.1. Location of Custom Scripts ... 93
B.2. Actions .. 93
B.3. How Does the Cluster Interpret the OCF Return Codes? .. 94

B.3.1. Exceptions .. 96

C. What Changed in 1.0 97
C.1. New .. 97
C.2. Changed ... 97
C.3. Removed ... 98

D. Installation 99
D.1. Choosing a Cluster Stack ... 99
D.2. Enabling Pacemaker .. 99

D.2.1. For Corosync .. 99
D.2.2. For Heartbeat .. 101

E. Upgrading Cluster Software 103
E.1. Version Compatibility .. 103

Configuration Explained

vi

E.2. Complete Cluster Shutdown .. 104
E.2.1. Procedure ... 104

E.3. Rolling (node by node) ... 104
E.3.1. Procedure ... 104
E.3.2. Version Compatibility ... 105
E.3.3. Crossing Compatibility Boundaries .. 105

E.4. Disconnect and Reattach .. 105
E.4.1. Procedure ... 105
E.4.2. Notes .. 106

F. Upgrading the Configuration from 0.6 107
F.1. Preparation ... 107
F.2. Perform the upgrade ... 107

F.2.1. Upgrade the software ... 107
F.2.2. Upgrade the Configuration .. 107
F.2.3. Manually Upgrading the Configuration ... 108

G. Is This init Script LSB Compatible? 111

H. Sample Configurations 113
H.1. An Empty Configuration .. 113
H.2. A Simple Configuration ... 113
H.3. An Advanced Configuration .. 114

I. Further Reading 117

J. Revision History 119

Index 121

vii

List of Figures
1.1. Active/Passive Redundancy .. 2
1.2. Shared Failover .. 3
1.3. N to N Redundancy ... 4
1.4. Conceptual Stack Overview .. 5
1.5. The Pacemaker Stack .. 6
1.6. Internal Components .. 7
2.1. Sample output from crm_mon ... 10
2.2. Sample output from crm_mon -n ... 11
2.3. Safely using an editor to modify the cluster configuration .. 11
2.4. Safely using an editor to modify a subsection of the cluster configuration 12
2.5. Searching for STONITH related configuration items .. 12
2.6. Creating and displaying the active sandbox ... 13
2.7. Small Cluster Transition .. 14
2.8. Complex Cluster Transition ... 16
4.1. The result of using crm_attribute to specify which kernel pcmk-1 is running 25
6.1. Ordered Set ... 44
6.2. Two Sets of Unordered Resources .. 45
6.3. Three Resources Sets .. 46
6.4. Another Three Resources Sets ... 48
9.1. How the cluster translates the pingd constraint ... 64
11.1. Obtaining a list of STONITH Parameters .. 84
12.1. A bare-bones status entry for a healthy node called cl-virt-1 .. 85
12.2. Example set of transient node attributes for node "cl-virt-1" ... 86
12.3. A record of the apcstonith resource ... 87
12.4. A monitor operation performed by the cluster to determine the current state of the
apcstonith resource ... 88
12.5. Resource history of a pingd clone with multiple jobs ... 89

viii

ix

List of Tables
3.1. Configuration Version Properties ... 19
3.2. Properties Controling Validation ... 19
3.3. Properties Maintained by the Cluster ... 20
3.4. Cluster Options .. 21
5.1. Properties of a Primitive Resource .. 31
5.2. Options for a Primitive Resource ... 32
5.3. Properties of an Operation .. 35
6.1. Options for Simple Location Constraints .. 40
6.2. Properties of an Ordering Constraint ... 41
6.3. Properties of a Collocation Constraint .. 42
8.1. Properties of a Rule ... 51
8.2. Properties of an Expression .. 52
8.3. Properties of a Date Expression .. 52
8.4. Properties of a Date Spec .. 53
9.1. Environment Variables Used to Connect to Remote Instances of the CIB 59
9.2. Extra top-level CIB options for remote access ... 59
9.3. Common Options for a 'ping' Resource ... 63
10.1. Properties of a Group Resource .. 70
10.2. Properties of a Clone Resource .. 71
10.3. Clone specific configuration options ... 72
10.4. Environment variables supplied with Clone notify actions .. 74
10.5. Properties of a Multi-State Resource ... 75
10.6. Multi-state specific resource configuration options .. 75
10.7. Additional constraint options relevant to multi-state resources .. 77
10.8. Role implications of OCF return codes ... 78
10.9. Environment variables supplied with Master notify actions .. 79
12.1. Authoritative Sources for State Information .. 85
12.2. Node Status Fields ... 85
12.3. Contents of an lrm_rsc_op job. .. 87
B.1. Required Actions for OCF Agents ... 93
B.2. Optional Actions for OCF Agents .. 94
B.3. Types of recovery performed by the cluster ... 94
B.4. OCF Return Codes and How They are Handled .. 95
E.1. Summary of Upgrade Methodologies ... 103
E.2. Version Compatibility Table ... 105

x

xi

List of Examples
2.1. An empty configuration ... 9
2.2. Using a sandbox to make multiple changes atomically .. 13
3.1. An example of the fields set for a cib object .. 20
3.2. Deleting an option that is listed twice .. 23
4.1. Example cluster node entry .. 25
5.1. An example LSB resource .. 31
5.2. An example OCF resource ... 31
5.3. An example Heartbeat resource .. 31
5.4. An LSB resource with cluster options .. 33
5.5. An example OCF resource with instance attributes ... 34
5.6. Displaying the metadata for the Dummy resource agent template .. 34
5.7. An OCF resource with a recurring health check ... 35
5.8. An OCF resource with custom timeouts for its implicit actions ... 36
5.9. An OCF resource with two recurring health checks performing different levels of checks 37
5.10. Example of an OCF resource with a disabled health check ... 37
6.1. Example set of opt-in location constraints .. 40
6.2. Example set of opt-out location constraints .. 40
6.3. Example of two resources that prefer two nodes equally ... 41
6.4. Example of an optional and mandatory ordering constraint .. 42
6.5. An example colocation constraint .. 43
6.6. An example anti-colocation constraint .. 43
6.7. An example advisory-only colocation constraint .. 43
6.8. A chain of ordered resources .. 44
6.9. A chain of ordered resources expressed as a set ... 44
6.10. A group resource with the equivalent ordering rules .. 44
6.11. Ordered sets of unordered resources ... 45
6.12. Advanced use of set ordering - Three ordered sets, two of which are internally unordered 45
6.13. A chain of collocated resources ... 46
6.14. The equivalent colocation chain expressed using resource_sets .. 46
6.15. A group resource with the equivalent colocation rules ... 47
6.16. Using colocation sets to specify a common peer. .. 47
6.17. A colocation chain where the members of the middle set have no inter-dependencies and
the last has master status. .. 47
8.1. True if now is any time in the year 2005 .. 54
8.2. Equivalent expression. ... 54
8.3. 9am-5pm, Mon-Friday ... 54
8.4. 9am-6pm, Mon-Friday, or all day saturday ... 54
8.5. 9am-5pm or 9pm-12pm, Mon-Friday .. 54
8.6. Mondays in March 2005 ... 55
8.7. A full moon on Friday the 13th .. 55
8.8. Prevent myApacheRsc from running on c001n03 ... 55
8.9. Prevent myApacheRsc from running on c001n03 - expanded version 56
8.10. A sample nodes section for use with score-attribute .. 56
8.11. Defining different resource options based on the node name ... 57
8.12. Set resource-stickiness=INFINITY Mon-Fri between 9am and 6pm, and resource-
stickiness=0 all other times .. 57
9.1. Specifying a Base for Recurring Action Intervals .. 60
9.2. An example ping cluster resource, checks node connectivity once every minute 63
9.3. Don't run on unconnected nodes ... 63

Configuration Explained

xii

9.4. Run only on nodes connected to 3 or more ping nodes (assumes multiplier is set to
1000) .. 64
9.5. Prefer the node with the most connected ping nodes .. 64
9.6. A more complex example of choosing a location based on connectivity 65
9.7. Referencing rules from other constraints .. 66
9.8. Referencing attributes, options and operations from other resources 66
9.9. The DRBD Agent's Control logic for Supporting the reload Operation 67
9.10. The DRBD Agent Advertising Support for the reload Operation ... 67
9.11. Parameter that can be changed using reload ... 68
10.1. An example group .. 69
10.2. How the cluster sees a group resource .. 69
10.3. Example constraints involving groups .. 70
10.4. An example clone ... 71
10.5. Example constraints involving clones ... 73
10.6. Monitoring both states of a multi-state resource .. 76
10.7. Example constraints involving multi-state resources .. 77
10.8. Manually specifying which node should be promoted .. 78
11.1. Sample STONITH Resource .. 84
D.1. An example Corosync configuration file ... 99
D.2. Example options for an IPv6 environment ... 100
D.3. Configuration fragment for enabling Pacemaker under Corosync ... 100
D.4. Configuration fragment for enabling Pacemaker under Heartbeat .. 101
H.1. An empty configuration ... 113
H.2. 2 nodes, some cluster options and a resource ... 113
H.3. groups and clones with stonith ... 114

xiii

Preface

Table of Contents
1. Document Conventions ... xiii

1.1. Typographic Conventions .. xiii
1.2. Pull-quote Conventions ... xv
1.3. Notes and Warnings ... xv

2. We Need Feedback! ... xvi

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

xiv

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This avoids
difficult-to-follow phrasing such as 'Select Mouse from the Preferences sub-menu in the System
menu of the main menu bar'.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

Pull-quote Conventions

xv

maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring a box labeled 'Important' won't cause data loss but may cause irritation and
frustration.

Preface

xvi

Warning
Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://developerbugs.linux-
foundation.org/2 against the product Pacemaker.

When submitting a bug report, be sure to mention the manual's identifier: Pacemaker_Explained

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

2 http://developerbugs.linux-foundation.org/enter_bug.cgi?product=Pacemaker

http://developerbugs.linux-foundation.org/enter_bug.cgi?product=Pacemaker
http://developerbugs.linux-foundation.org/enter_bug.cgi?product=Pacemaker
http://developerbugs.linux-foundation.org/enter_bug.cgi?product=Pacemaker

Chapter 1.

1

Read-Me-First

Table of Contents
1.1. The Scope of this Document ... 1
1.2. What Is Pacemaker? .. 1
1.3. Types of Pacemaker Clusters ... 2
1.4. Pacemaker Architecture .. 4

1.4.1. Internal Components ... 6

1.1. The Scope of this Document
The purpose of this document is to definitively explain the concepts used to configure Pacemaker. To
achieve this best, it will focus exclusively on the XML syntax used to configure the CIB.

For those that are allergic to XML, Pacemaker comes with a cluster shell and a Python based GUI
exists, however these tools will not be covered at all in this document 1 , precisely because they hide
the XML.

Additionally, this document is NOT a step-by-step how-to guide for configuring a specific clustering
scenario. Although such guides exist, the purpose of this document is to provide an understanding of
the building blocks that can be used to construct any type of Pacemaker cluster.

1.2. What Is Pacemaker?
Pacemaker is a cluster resource manager. It achieves maximum availability for your cluster services
(aka. resources) by detecting and recovering from node and resource-level failures by making use of
the messaging and membership capabilities provided by your preferred cluster infrastructure (either
Corosync2 or Heartbeat).

Pacemaker's key features include:

• Detection and recovery of node and service-level failures

• Storage agnostic, no requirement for shared storage

• Resource agnostic, anything that can be scripted can be clustered

• Supports STONITH3 for ensuring data integrity

• Supports large and small clusters

• Supports both quorate4 and resource driven5 clusters

• Supports practically any redundancy configuration6

• Automatically replicated configuration that can be updated from any node

It is hoped however, that having understood the concepts explained here, that the functionality of these tools will also be more
readily understood.
2 http://www.corosync.org/

http://www.corosync.org/
http://en.wikipedia.org/wiki/STONITH
http://en.wikipedia.org/wiki/Quorum_(Distributed_Systems)
http://devresources.linux-foundation.org/dev/clusters/docs/ResourceDrivenClusters.pdf
http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
http://www.corosync.org/

Chapter 1. Read-Me-First

2

• Ability to specify cluster-wide service ordering, colocation and anti-colocation

• Support for advanced services type
• Clones: for services which need to be active on multiple nodes

• Multi-state: for services with multiple modes (eg. master/slave, primary/secondary)

• Unified, scriptable, cluster shell

1.3. Types of Pacemaker Clusters
Pacemaker makes no assumptions about your environment, this allows it to support practically any
redundancy configuration7 including Active/Active, Active/Passive, N+1, N+M, N-to-1 and N-to-N.

Two-node Active/Passive clusters using Pacemaker and DRBD
are a cost-effective solution for many High Availability situations.

Figure 1.1. Active/Passive Redundancy

7 http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations

http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations

Types of Pacemaker Clusters

3

By supporting many nodes, Pacemaker can dramatically reduce hardware costs by
allowing several active/passive clusters to be combined and share a common backup node

Figure 1.2. Shared Failover

Chapter 1. Read-Me-First

4

When shared storage is available, every node can potentially be used for failover.
Pacemaker can even run multiple copies of services to spread out the workload.

Figure 1.3. N to N Redundancy

1.4. Pacemaker Architecture
At the highest level, the cluster is made up of three pieces:

• Core cluster infrastructure providing messaging and membership functionality (illustrated in red)

• Non-cluster aware components (illustrated in blue). In a Pacemaker cluster, these pieces include not
only the scripts that knows how to start, stop and monitor resources, but also a local daemon that
masks the differences between the different standards these scripts implement.

• A brain (illustrated in green) that processes and reacts to events from the cluster (nodes leaving or
joining) and resources (eg. monitor failures) as well as configuration changes from the administrator.
In response to all of these events, Pacemaker will compute the ideal state of the cluster and plot a
path to achieve it. This may include moving resources, stopping nodes and even forcing them offline
with remote power switches.

Pacemaker Architecture

5

Conceptual overview of the cluster stack
Figure 1.4. Conceptual Stack Overview

When combined with Corosync, Pacemaker also supports popular open source cluster filesystems 8

Due to recent standardization within the cluster filesystem community, they make use of a common
distributed lock manager which makes use of Corosync for its messaging capabilities and Pacemaker
for its membership (which nodes are up/down) and fencing services.

Even though Pacemaker also supports Heartbeat, the filesystems need to use the stack for messaging and membership and
Corosync seems to be what they're standardizing on. Technically it would be possible for them to support Heartbeat as well,
however there seems little interest in this.

Chapter 1. Read-Me-First

6

The Pacemaker stack when running on Corosync
Figure 1.5. The Pacemaker Stack

1.4.1. Internal Components
Pacemaker itself is composed of four key components (illustrated below in the same color scheme as
the previous diagram):

• CIB (aka. Cluster Information Base)

• CRMd (aka. Cluster Resource Management daemon)

• PEngine (aka. PE or Policy Engine)

• STONITHd

Internal Components

7

Subsystems of a Pacemaker cluster running on Corosync
Figure 1.6. Internal Components

The CIB uses XML to represent both the cluster's configuration and current state of all resources in the
cluster. The contents of the CIB are automatically kept in sync across the entire cluster and are used
by the PEngine to compute the ideal state of the cluster and how it should be achieved.

This list of instructions is then fed to the DC (Designated Co-ordinator). Pacemaker centralizes all
cluster decision making by electing one of the CRMd instances to act as a master. Should the elected
CRMd process, or the node it is on, fail... a new one is quickly established.

The DC carries out the PEngine's instructions in the required order by passing them to either the
LRMd (Local Resource Management daemon) or CRMd peers on other nodes via the cluster
messaging infrastructure (which in turn passes them on to their LRMd process).

The peer nodes all report the results of their operations back to the DC and based on the expected
and actual results, will either execute any actions that needed to wait for the previous one to
complete, or abort processing and ask the PEngine to recalculate the ideal cluster state based on the
unexpected results.

In some cases, it may be necessary to power off nodes in order to protect shared data or complete
resource recovery. For this Pacemaker comes with STONITHd. STONITH is an acronym for Shoot-
The-Other-Node-In-The-Head and is usually implemented with a remote power switch. In Pacemaker,
STONITH devices are modeled as resources (and configured in the CIB) to enable them to be easily
monitored for failure, however STONITHd takes care of understanding the STONITH topology such
that its clients simply request a node be fenced and it does the rest.

8

Chapter 2.

9

Configuration Basics

Table of Contents
2.1. Configuration Layout .. 9
2.2. The Current State of the Cluster ... 10
2.3. How Should the Configuration be Updated? ... 11
2.4. Quickly Deleting Part of the Configuration .. 12
2.5. Updating the Configuration Without Using XML .. 12
2.6. Making Configuration Changes in a Sandbox ... 13
2.7. Testing Your Configuration Changes .. 14
2.8. Do I Need to Update the Configuration on all Cluster Nodes? ... 17

2.1. Configuration Layout
The cluster is written using XML notation and divided into two main sections; configuration and status.

The status section contains the history of each resource on each node and based on this data,
the cluster can construct the complete current state of the cluster. The authoritative source for the
status section is the local resource manager (lrmd) process on each cluster node and the cluster will
occasionally repopulate the entire section. For this reason it is never written to disk and admin's are
advised against modifying it in any way.

The configuration section contains the more traditional information like cluster options, lists of
resources and indications of where they should be placed. The configuration section is the primary
focus of this document.

The configuration section itself is divided into four parts:

• Configuration options (called crm_config)

• Nodes

• Resources

• Resource relationships (called constraints)

 <cib generated="true" admin_epoch="0" epoch="0" num_updates="0" have-quorum="false">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
 </cib>

Example 2.1. An empty configuration

Chapter 2. Configuration Basics

10

2.2. The Current State of the Cluster
Before one starts to configure a cluster, it is worth explaining how to view the finished product. For
this purpose we have created the crm_mon utility that will display the current state of an active
cluster. It can show the cluster status by node or by resource and can be used in either single-shot or
dynamically-updating mode. There are also modes for displaying a list of the operations performed
(grouped by node and resource) as well as information about failures.

Using this tool, you can examine the state of the cluster for irregularities and see how it responds
when you cause or simulate failures.

Details on all the available options can be obtained using the crm_mon --help command.

 # crm_mon
 ============
 Last updated: Fri Nov 23 15:26:13 2007
 Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec)
 3 Nodes configured.
 5 Resources configured.
 ============

 Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online
 192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1
 192.168.100.182 (heartbeat:IPaddr): Started sles-1
 192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1
 rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1
 child_DoFencing:2 (stonith:external/vmware): Started sles-1
 Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby
 Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online
 rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3
 rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3
 child_DoFencing:0 (stonith:external/vmware): Started sles-3

Figure 2.1. Sample output from crm_mon

How Should the Configuration be Updated?

11

 # crm_mon -n
 ============
 Last updated: Fri Nov 23 15:26:13 2007
 Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec)
 3 Nodes configured.
 5 Resources configured.
 ============

 Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online
 Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby
 Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online

 Resource Group: group-1
 192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1
 192.168.100.182 (heartbeat:IPaddr): Started sles-1
 192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1
 rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1
 rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3
 rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3
 Clone Set: DoFencing
 child_DoFencing:0 (stonith:external/vmware): Started sles-3
 child_DoFencing:1 (stonith:external/vmware): Stopped
 child_DoFencing:2 (stonith:external/vmware): Started sles-1

Figure 2.2. Sample output from crm_mon -n

The DC (Designated Controller) node is where all the decisions are made and if the current DC fails
a new one is elected from the remaining cluster nodes. The choice of DC is of no significance to an
administrator beyond the fact that its logs will generally be more interesting.

2.3. How Should the Configuration be Updated?
There are three basic rules for updating the cluster configuration:

• Rule 1 - Never edit the cib.xml file manually. Ever. I'm not making this up.

• Rule 2 - Read Rule 1 again.

• Rule 3 - The cluster will notice if you ignored rules 1 & 2 and refuse to use the configuration.

Now that it is clear how NOT to update the configuration, we can begin to explain how you should.

The most powerful tool for modifying the configuration is the cibadmin command which talks to a
running cluster. With cibadmin, the user can query, add, remove, update or replace any part of the
configuration and all changes take effect immediately so there is no need to perform a reload-like
operation.

The simplest way of using cibadmin is to us it to save the current configuration to a temporary file, edit
that file with your favorite text or XML editor and then upload the revised configuration.

 cibadmin --query > tmp.xml
 vi tmp.xml
 cibadmin --replace --xml-file tmp.xml

Figure 2.3. Safely using an editor to modify the cluster configuration

Chapter 2. Configuration Basics

12

Some of the better XML editors can make use of a Relax NG schema to help make sure any changes
you make are valid. The schema describing the configuration can normally be found in /usr/lib/
heartbeat/pacemaker.rng on most systems.

If you only wanted to modify the resources section, you could instead do

 cibadmin --query --obj_type resources > tmp.xml
 vi tmp.xml
 cibadmin --replace --obj_type resources --xml-file tmp.xml

Figure 2.4. Safely using an editor to modify a subsection of the cluster configuration

to avoid modifying any other part of the configuration.

2.4. Quickly Deleting Part of the Configuration
Identify the object you wish to delete. eg.

 # cibadmin -Q | grep stonith

 <nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="reboot"/>
 <nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="1"/>
 <primitive id="child_DoFencing" class="stonith" type="external/vmware">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:1" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:2" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:3" type="external/vmware" class="stonith">

Figure 2.5. Searching for STONITH related configuration items

Next identify the resource's tag name and id (in this case we'll chose primitive and
child_DoFencing). Then simply execute:

cibadmin --delete --crm_xml ‘<primitive id="child_DoFencing"/>'

2.5. Updating the Configuration Without Using XML
Some common tasks can also be performed with one of the higher level tools that avoid the need to
read or edit XML.

To enable stonith for example, one could run:

crm_attribute --attr-name stonith-enabled --attr-value true

Or to see if somenode is allowed to run resources, there is:

crm_standby --get-value --node-uname somenode

Or to find the current location of my-test-rsc one can use:

Making Configuration Changes in a Sandbox

13

crm_resource --locate --resource my-test-rsc

2.6. Making Configuration Changes in a Sandbox
Often it is desirable to preview the effects of a series of changes before updating the configuration
atomically. For this purpose we have created crm_shadow which creates a "shadow" copy of the
configuration and arranges for all the command line tools to use it.

To begin, simply invoke crm_shadow and give it the name of a configuration to create 1 and be sure to
follow the simple on-screen instructions.

Warning
Read the above carefully, failure to do so could result in you destroying the cluster's active
configuration

 # crm_shadow --create test
 Setting up shadow instance
 Type Ctrl-D to exit the crm_shadow shell
 shadow[test]:
 shadow[test] # crm_shadow --which
 test

Figure 2.6. Creating and displaying the active sandbox

From this point on, all cluster commands will automatically use the shadow copy instead of talking
to the cluster's active configuration. Once you have finished experimenting, you can either commit
the changes, or discard them as shown below. Again, be sure to follow the on-screen instructions
carefully.

For a full list of crm_shadow options and commands, invoke it with the --help option.

 shadow[test] # crm_failcount -G -r rsc_c001n01
 name=fail-count-rsc_c001n01 value=0
 shadow[test] # crm_standby -v on -n c001n02
 shadow[test] # crm_standby -G -n c001n02
 name=c001n02 scope=nodes value=on
 shadow[test] # cibadmin --erase --force
 shadow[test] # cibadmin --query

 <cib cib_feature_revision="1" validate-with="pacemaker-1.0" admin_epoch="0"
 crm_feature_set="3.0" have-quorum="1" epoch="112"
 dc-uuid="c001n01" num_updates="1" cib-last-written="Fri Jun 27 12:17:10 2008">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
 </cib>

Shadow copies are identified with a name, making it possible to have more than one

Chapter 2. Configuration Basics

14

 shadow[test] # crm_shadow --delete test --force
 Now type Ctrl-D to exit the crm_shadow shell
 shadow[test] # exit
 # crm_shadow --which
 No shadow instance provided
 # cibadmin -Q

 <cib cib_feature_revision="1" validate-with="pacemaker-1.0" admin_epoch="0"
 crm_feature_set="3.0" have-quorum="1" epoch="110"
 dc-uuid="c001n01" num_updates="551">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="cib-bootstrap-1" name="stonith-enabled" value="1"/>
 <nvpair id="cib-bootstrap-2" name="pe-input-series-max" value="30000"/>

Making changes in a sandbox and verifying the real configuration is untouched

Example 2.2. Using a sandbox to make multiple changes atomically

2.7. Testing Your Configuration Changes
We saw previously how to make a series of changes to a "shadow" copy of the configuration. Before
loading the changes back into the cluster (eg. crm_shadow --commit mytest --force), it is
often advisable to simulate the effect of the changes with ptest. Eg.

ptest --live-check -VVVVV --save-graph tmp.graph --save-dotfile tmp.dot

The tool uses the same library as the live cluster to show what it would have done given the supplied
input. It's output, in addition to a significant amount of logging, is stored in two files tmp.graph and
tmp.dot, both are representations of the same thing -- the cluster's response to your changes. In
the graph file is stored the complete transition, containing a list of all the actions, their parameters and
their pre-requisites. Because the transition graph is not terribly easy to read, the tool also generates a
Graphviz dot-file representing the same information.

An example transition graph as represented by Graphviz
Figure 2.7. Small Cluster Transition

Interpreting the Graphviz output

• Arrows indicate ordering dependencies

• Dashed-arrows indicate dependencies that are not present in the transition graph

• Actions with a dashed border of any color do not form part of the transition graph

Testing Your Configuration Changes

15

• Actions with a green border form part of the transition graph

• Actions with a red border are ones the cluster would like to execute but are unrunnable

• Actions with a blue border are ones the cluster does not feel need to be executed

• Actions with orange text are pseudo/pretend actions that the cluster uses to simplify the graph

• Actions with black text are sent to the LRM

• Resource actions have text of the form rsc_action_interval node

• Any action depending on an action with a red border will not be able to execute.

• Loops are really bad. Please report them to the development team.

In the above example, it appears that a new node, node2, has come online and that the cluster
is checking to make sure rsc1, rsc2 and rsc3 are not already running there (Indicated by the
*_monitor_0 entries). Once it did that, and assuming the resources were not active there, it would
have liked to stop rsc1 and rsc2 on node1 and move them to node2. However, there appears to
be some problem and the cluster cannot or is not permitted to perform the stop actions which implies
it also cannot perform the start actions. For some reason the cluster does not want to start rsc3
anywhere.

For information on the options supported by ptest, use ptest --help

Chapter 2. Configuration Basics

16

Another, slightly more complex, transition graph that you're not expected to be able to read
Figure 2.8. Complex Cluster Transition

Do I Need to Update the Configuration on all Cluster Nodes?

17

2.8. Do I Need to Update the Configuration on all Cluster
Nodes?
No. Any changes are immediately synchronized to the other active members of the cluster.

To reduce bandwidth, the cluster only broadcasts the incremental updates that result from your
changes and uses MD5 sums to ensure that each copy is completely consistent.

18

Chapter 3.

19

Cluster Options

Table of Contents
3.1. Special Options .. 19

3.1.1. Configuration Version ... 19
3.1.2. Other Fields .. 19
3.1.3. Fields Maintained by the Cluster .. 20

3.2. Cluster Options .. 20
3.2.1. Available Cluster Options ... 21
3.2.2. Querying and Setting Cluster Options ... 22
3.2.3. When Options are Listed More Than Once ... 23

3.1. Special Options
The reason for these fields to be placed at the top level instead of with the rest of cluster options is
simply a matter of parsing. These options are used by the configuration database which is, by design,
mostly ignorant of the content it holds. So the decision was made to place them in an easy to find
location.

3.1.1. Configuration Version
When a node joins the cluster, the cluster will perform a check to see who has the best configuration
based on the fields below. It then asks the node with the highest (admin_epoch, epoch,
num_updates) tuple to replace the configuration on all the nodes - which makes setting them and
setting them correctly very important.

Field Description

admin_epoch Never modified by the cluster. Use this to
make the configurations on any inactive nodes
obsolete.

Never set this value to zero, in such cases the
cluster cannot tell the difference between your
configuration and the "empty" one used when
nothing is found on disk.

epoch Incremented every time the configuration is
updated (usually by the admin)

num_updates Incremented every time the configuration or
status is updated (usually by the cluster)

Table 3.1. Configuration Version Properties

3.1.2. Other Fields

Field Description

validate-with Determines the type of validation being done on
the configuration. If set to "none", the cluster will

Chapter 3. Cluster Options

20

Field Description
not verify that updates conform the the DTD (nor
reject ones that don't). This option can be useful
when operating a mixed version cluster during an
upgrade.

Table 3.2. Properties Controling Validation

3.1.3. Fields Maintained by the Cluster

Field Description

crm-debug-origin Indicates where the last update came from.
Informational purposes only.

cib-last-written Indicates when the configuration was last written
to disk. Informational purposes only.

dc-uuid Indicates which cluster node is the current
leader. Used by the cluster when placing
resources and determining the order of some
events.

have-quorum Indicates if the cluster has quorum. If false, this
may mean that the cluster cannot start resources
or fence other nodes. See no-quorum-policy
below.

Table 3.3. Properties Maintained by the Cluster

Note that although these fields can be written to by the admin, in most cases the cluster will overwrite
any values specified by the admin with the "correct" ones. To change the admin_epoch, for example,
one would use:

cibadmin --modify --crm_xml ‘<cib admin_epoch="42"/>'

A complete set of fields will look something like this:

 <cib have-quorum="true" validate-with="pacemaker-1.0" admin_epoch="1" epoch="12"
 num_updates="65"
 dc-uuid="ea7d39f4-3b94-4cfa-ba7a-952956daabee">

Example 3.1. An example of the fields set for a cib object

3.2. Cluster Options
Cluster options, as you'd expect, control how the cluster behaves when confronted with certain
situations.

They are grouped into sets and, in advanced configurations, there may be more than one.1 For now
we will describe the simple case where each option is present at most once.

This will be described later in the section on Chapter 8, Rules where we will show how to have the cluster use different sets
of options during working hours (when downtime is usually to be avoided at all costs) than it does during the weekends (when
resources can be moved to the their preferred hosts without bothering end users)

Available Cluster Options

21

3.2.1. Available Cluster Options

Option Default Description

batch-limit 30 The number of jobs that the TE
is allowed to execute in parallel.
The "correct" value will depend
on the speed and load of your
network and cluster nodes.

no-quorum-policy stop What to do when the cluster
does not have quorum. Allowed
values:
• ignore - continue all resource

management

• freeze - continue resource
management, but don't
recover resources from
nodes not in the affected
partition

• stop - stop all resources in
the affected cluster parition

• suicide - fence all nodes in
the affected cluster partition

symmetric-cluster TRUE Can all resources run on any
node by default?

stonith-enabled TRUE Should failed nodes and nodes
with resources that can't be
stopped be shot? If you value
your data, set up a STONITH
device and enable this.

If true, or unset, the cluster
will refuse to start resources
unless one or more STONITH
resources have been
configured also.

stonith-action reboot Action to send to STONITH
device. Allowed values: reboot,
poweroff.

cluster-delay 60s Round trip delay over the
network (excluding action
execution). The "correct" value
will depend on the speed
and load of your network and
cluster nodes.

stop-orphan-resources TRUE Should deleted resources be
stopped

Chapter 3. Cluster Options

22

Option Default Description

stop-orphan-actions TRUE Should deleted actions be
cancelled

start-failure-is-fatal TRUE When set to FALSE, the
cluster will instead use the
resource's failcount and value
for resource-failure-stickiness

pe-error-series-max -1 (all) The number of PE inputs
resulting in ERRORs to save.
Used when reporting problems.

pe-warn-series-max -1 (all) The number of PE inputs
resulting in WARNINGs to
save. Used when reporting
problems.

pe-input-series-max -1 (all) The number of "normal" PE
inputs to save. Used when
reporting problems.

Table 3.4. Cluster Options

You can always obtain an up-to-date list of cluster options, including their default values by running the
pengine metadata command.

3.2.2. Querying and Setting Cluster Options
Cluster options can be queried and modified using the crm_attribute tool. To get the current value of
cluster-delay, simply use:

crm_attribute --attr-name cluster-delay --get-value

which is more simply written as

crm_attribute --get-value -n cluster-delay

If a value is found, the you'll see a result such as this

 # crm_attribute --get-value -n cluster-delay
 name=cluster-delay value=60s

However if no value is found, the tool will display an error:

 # crm_attribute --get-value -n clusta-deway
 name=clusta-deway value=(null)
 Error performing operation: The object/attribute does not exist

To use a different value, eg. 30s, simply run:

crm_attribute --attr-name cluster-delay --attr-value 30s

To go back to the cluster's default value, you can then delete the value with:

crm_attribute --attr-name cluster-delay --delete-attr

When Options are Listed More Than Once

23

3.2.3. When Options are Listed More Than Once
If you ever see something like the following, it means that the option you're modifying is present more
than once.

 # crm_attribute --attr-name batch-limit --delete-attr
 Multiple attributes match name=batch-limit in crm_config:
 Value: 50 (set=cib-bootstrap-options, id=cib-bootstrap-options-batch-limit)
 Value: 100 (set=custom, id=custom-batch-limit)
 Please choose from one of the matches above and supply the 'id' with --attr-id

Example 3.2. Deleting an option that is listed twice

In such cases follow the on-screen instructions to perform the requested action. To determine which
value is currently being used by the cluster, please refer to the the section on Chapter 8, Rules.

24

Chapter 4.

25

Cluster Nodes

Table of Contents
4.1. Defining a Cluster Node ... 25
4.2. Describing a Cluster Node .. 25
4.3. Adding a New Cluster Node ... 26

4.3.1. Corosync ... 26
4.3.2. Heartbeat .. 26

4.4. Removing a Cluster Node ... 26
4.4.1. Corosync ... 26
4.4.2. Heartbeat .. 27

4.5. Replacing a Cluster Node ... 27
4.5.1. Corosync ... 27
4.5.2. Heartbeat .. 27

4.1. Defining a Cluster Node
Each node in the cluster will have an entry in the nodes section containing its UUID, uname and type.

 <node id="1186dc9a-324d-425a-966e-d757e693dc86" uname="pcmk-1" type="normal"/>

Example 4.1. Example cluster node entry

In normal circumstances, the admin should let the cluster populate this information automatically
from the communications and membership data. However one can use the crm_uuid tool to read an
existing UUID or define a value before the cluster starts.

4.2. Describing a Cluster Node
Beyond the basic definition of a node, the administrator can also describe the node's attributes,
such as how much RAM, disk, what OS or kernel version it has, perhaps even its physical location.
This information can then be used by the cluster when deciding where to place resources. For more
information on the use of node attributes, see the section on Chapter 8, Rules.

Node attributes can be specified ahead of time or populated later, when the cluster is running, using
crm_attribute.

Below is what the node's definition would look like if the admin ran the command:

 crm_attribute --type nodes --node-uname pcmk-1 --attr-name kernel --attr-value `uname -r`

 <node uname="pcmk-1" type="normal" id="1186dc9a-324d-425a-966e-d757e693dc86">
 <instance_attributes id="nodes-1186dc9a-324d-425a-966e-d757e693dc86">
 <nvpair id="kernel-1186dc9a-324d-425a-966e-d757e693dc86" name="kernel"
 value="2.6.16.46-0.4-default"/>
 </instance_attributes>
 </node>

Figure 4.1. The result of using crm_attribute to specify which kernel pcmk-1 is running

Chapter 4. Cluster Nodes

26

A simpler way to determine the current value of an attribute is to use crm_attribute command again:

crm_attribute --type nodes --node-uname pcmk-1 --attr-name kernel --get-
value

By specifying --type nodes the admin tells the cluster that this attribute is persistent. There are
also transient attributes which are kept in the status section which are "forgotten" whenever the node
rejoins the cluster. The cluster uses this area to store a record of how many times a resource has
failed on that node but administrators can also read and write to this section by specifying --type
status.

4.3. Adding a New Cluster Node

4.3.1. Corosync
Adding a new is as simple as installing Corosync and Pacemaker, and copying /etc/corosync/
corosync.conf and /etc/ais/authkey (if it exists) from an existing node. You may need to
modify the mcastaddr option to match the new node's IP address.

If a log message containing "Invalid digest" appears from Corosync, the keys are not consistent
between the machines.

4.3.2. Heartbeat
Provided you specified autojoin any in ha.cf, adding a new is as simple as installing heartbeat and
copying ha.cf and authkeys from an existing node.

If not, then after setting up ha.cf and authkeys, you must use the hb_addnode command before
starting the new node.

4.4. Removing a Cluster Node

4.4.1. Corosync
Because the messaging and membership layers are the authoritative source for cluster nodes,
deleting them from the CIB is not a reliable solution. First one must arrange for heartbeat to forget
about the node (pcmk-1 in the example below).

On the host to be removed:

1. Find and record the node's Corosync id: crm_node -i

2. Stop the cluster: /etc/init.d/corosync stop

Next, from one of the remaining active cluster nodes:

1. Tell the cluster to forget about the removed host: crm_node -R COROSYNC_ID

2. Only now is it safe to delete the node from the CIB with:

cibadmin --delete --obj_type nodes --crm_xml '<node uname="pcmk-1"/>'

Heartbeat

27

cibadmin --delete --obj_type status --crm_xml '<node_state
uname="pcmk-1"/>'

4.4.2. Heartbeat
Because the messaging and membership layers are the authoritative source for cluster nodes,
deleting them from the CIB is not a reliable solution. First one must arrange for heartbeat to forget
about the node (pcmk-1 in the example below). To do this, shut down heartbeat on the node and then,
from one of the remaining active cluster nodes, run:

hb_delnode pcmk-1

Only then is it safe to delete the node from the CIB with:

cibadmin --delete --obj_type nodes --crm_xml '<node uname="pcmk-1"/>'

cibadmin --delete --obj_type status --crm_xml '<node_state uname="pcmk-1"/
>'

4.5. Replacing a Cluster Node

4.5.1. Corosync
The five-step guide to replacing an existing cluster node:

1. Make sure the old node is completely stopped

2. Give the new machine the same hostname and IP address as the old one

3. Install the cluster software :-)

4. Copy /etc/corosync/corosync.conf and /etc/ais/authkey (if it exists) to the new node

5. Start the new cluster node

If a log message containing "Invalid digest" appears from Corosync, the keys are not consistent
between the machines.

4.5.2. Heartbeat
The seven-step guide to replacing an existing cluster node:

1. Make sure the old node is completely stopped

2. Give the new machine the same hostname as the old one

3. Go to an active cluster node and look up the UUID for the old node in /var/lib/heartbeat/
hostcache

4. Install the cluster software

5. Copy ha.cf and authkeys to the new node

6. On the new node, populate it's UUID using crm_uuid -w and the UUID from step 2

Chapter 4. Cluster Nodes

28

7. Start the new cluster node

Chapter 5.

29

Cluster Resources

Table of Contents
5.1. What is a Cluster Resource .. 29
5.2. Supported Resource Classes .. 29

5.2.1. Open Cluster Framework ... 29
5.2.2. Linux Standard Base ... 30
5.2.3. Legacy Heartbeat .. 30

5.3. Properties .. 30
5.4. Resource Options ... 32
5.5. Setting Global Defaults for Resource Options .. 33
5.6. Instance Attributes .. 33
5.7. Resource Operations .. 35

5.7.1. Monitoring Resources for Failure .. 35
5.8. Setting Global Defaults for Operations ... 36

5.8.1. When Resources Take a Long Time to Start/Stop .. 36
5.8.2. Multiple Monitor Operations .. 37
5.8.3. Disabling a Monitor Operation .. 37

5.1. What is a Cluster Resource
The role of a resource agent is to abstract the service it provides and present a consistent view to the
cluster, which allows the cluster to be agnostic about the resources it manages. The cluster doesn't
need to understand how the resource works because it relies on the resource agent to do the right
thing when given a start, stop or monitor command.

For this reason it is crucial that resource agents are well tested.

Typically resource agents come in the form of shell scripts, however they can be written using any
technology (such as C, Python or Perl) that the author is comfortable with.

5.2. Supported Resource Classes
There are three basic classes of agents supported by Pacemaker. In order of encouraged usage they
are:

5.2.1. Open Cluster Framework
The OCF Spec (as it relates to resource agents can be found at: http://www.opencf.org/cgi-bin/
viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD) 1 and is basically an extension of the Linux
Standard Base conventions for init scripts to

• support parameters

• make them self describing, and

Note: The Pacemaker implementation has been somewhat extended from the OCF Specs, but none of those changes are
incompatible with the original OCF specification

http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD
http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD

Chapter 5. Cluster Resources

30

• extensible

OCF specs have strict definitions of what exit codes actions must return 2 The cluster follows these
specifications exactly, and exiting with the wrong exit code will cause the cluster to behave in ways
you will likely find puzzling and annoying. In particular, the cluster needs to distinguish a completely
stopped resource from one which is in some erroneous and indeterminate state.

Parameters are passed to the script as environment variables, with the special prefix OCF_RESKEY_.
So, if you need to be given a parameter which the user thinks of as ip it will be passed to the script as
OCF_RESKEY_ip. The number and purpose of the parameters is completely arbitrary, however your
script should advertise any that it supports using the meta-data command.

For more information, see http://wiki.linux-ha.org/OCFResourceAgent and Appendix B, More About
OCF Resource Agents.

5.2.2. Linux Standard Base
LSB resource agents are those found in /etc/init.d. Generally they are provided by the OS/
distribution and in order to be used with the cluster, must conform to the LSB Spec.

The LSB Spec (as it relates to init scripts) can be found at: http://refspecs.linux-foundation.org/
LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

Many distributions claim LSB compliance but ship with broken init scripts. To see if your init script
is LSB-compatible, see the FAQ entry Appendix G, Is This init Script LSB Compatible?. The most
common problems are:

• Not implementing the status operation at all

• Not observing the correct exit status codes for start/stop/status actions

• Starting a started resource returns an error (this violates the LSB spec)

• Stopping a stopped resource returns an error (this violates the LSB spec)

5.2.3. Legacy Heartbeat
Version 1 of Heartbeat came with its own style of resource agents and it is highly likely that many
people have written their own agents based on its conventions. To enable administrators to continue to
use these agents, they are supported by the new cluster manager.

For more information, see: http://wiki.linux-ha.org/HeartbeatResourceAgent

The OCF class is the most preferred one as it is an industry standard, highly flexible (allowing
parameters to be passed to agents in a non-positional manner) and self-describing.

There is also an additional class, STONITH, which is used exclusively for fencing related resources.
This is discussed later in Chapter 11, Protecting Your Data - STONITH.

5.3. Properties
These values tell the cluster which script to use for the resource, where to find that script and what
standards it conforms to.

Included with the cluster is the ocf-tester script which can be useful in this regard.

http://wiki.linux-ha.org/OCFResourceAgent
http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
http://wiki.linux-ha.org/HeartbeatResourceAgent

Properties

31

Field Description

id Your name for the resource

class The standard the script conforms to. Allowed
values: heartbeat, lsb, ocf, stonith

type The name of the Resource Agent you wish to
use. eg. IPaddr or Filesystem

provider The OCF spec allows multiple vendors to supply
the same ResourceAgent. To use the OCF
resource agents supplied with Heartbeat, you
should specify heartbeat here.

Table 5.1. Properties of a Primitive Resource

Resource definitions can be queried with the crm_resource tool. For example

crm_resource --resource Email --query-xml

might produce

 <primitive id="Email" class="lsb" type="exim"/>

Example 5.1. An example LSB resource

Note
One of the main drawbacks to LSB resources is that they do not allow any parameters

or, for an OCF resource:

 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>

Example 5.2. An example OCF resource

or, finally for the equivalent legacy Heartbeat resource:

 <primitive id="Public-IP-legacy" class="heartbeat" type="IPaddr">
 <instance_attributes id="params-public-ip-legacy">
 <nvpair id="public-ip-addr-legacy" name="1" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>

Example 5.3. An example Heartbeat resource

Chapter 5. Cluster Resources

32

Note
Heartbeat resources take only ordered and unnamed parameters. The supplied name
therefor indicates the order in which they are passed to the script. Only single digit values
are allowed.

5.4. Resource Options
Options are used by the cluster to decide how your resource should behave and can be easily set
using the --meta option of the crm_resource command.

Field Default Description

priority 0 If not all resources can be
active, the cluster will stop
lower priority resources in order
to keep higher priority ones
active.

target-role Started What state should the cluster
attempt to keep this resource
in? Allowed values:

• Stopped - Force the resource
to

• Started - Allow the resource
to be started (In the case of
multi-state resources, they
will not promoted to master)

• Master - Allow the resource
to be started and, if
appropriate, promoted

is-managed TRUE Is the cluster allowed to start
and stop the resource? Allowed
values: true, false

resource-stickiness Inherited How much does the resource
prefer to stay where it is?
Defaults to the value of
resource-stickiness in the
rsc_defaults section

migration-threshold 0 (disabled) How many failures should
occur for this resource on a
node before making the node
ineligible to host this resource.

failure-timeout 0 (disabled) How many seconds to
wait before acting as if the
failure had not occurred
(and potentially allowing the

Setting Global Defaults for Resource Options

33

Field Default Description
resource back to the node on
which it failed.

multiple-active stop_start What should the cluster do
if it ever finds the resource
active on more than one node.
Allowed values:

• block - mark the resource as
unmanaged

• stop_only - stop all active
instances and leave them
that way

• stop_start - stop all active
instances and start the
resource in one location only

Table 5.2. Options for a Primitive Resource

If you performed the following commands on the previous LSB Email resource

 crm_resource --meta --resource Email --set-parameter priority --property-value 100
 crm_resource --meta --resource Email --set-parameter multiple-active --property-value block

the resulting resource definition would be

 <primitive id="Email" class="lsb" type="exim">
 <meta_attributes id="meta-email">
 <nvpair id="email-priority" name="priority" value="100"/>
 <nvpair id="email-active" name="multiple-active" value="block"/>
 </meta_attributes>
 </primitive>

Example 5.4. An LSB resource with cluster options

5.5. Setting Global Defaults for Resource Options
To set a default value for a resource option, simply add it to the rsc_defaults section with
crm_attribute. Thus,

crm_attribute --type rsc_defaults --attr-name is-managed --attr-value false

would prevent the cluster from starting or stopping any of the resources in the configuration (unless of
course the individual resources were specifically enabled and had is-managed set to true).

5.6. Instance Attributes
The scripts of some resource classes (LSB not being one of them) can be given parameters which
determine how they behave and which instance of a service they control.

Chapter 5. Cluster Resources

34

If your resource agent supports parameters, you can add them with the crm_resource command.
For instance

crm_resource --resource Public-IP --set-parameter ip --property-value
1.2.3.4

would create an entry in the resource like this

 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>

Example 5.5. An example OCF resource with instance attributes

For an OCF resource, the result would be an environment variable called OCF_RESKEY_ip with a
value of 1.2.3.4

The list of instance attributes supported by an OCF script can be found by calling the resource
script with the meta-data command. The output contains an XML description of all the supported
attributes, their purpose and default values.

 export OCF_ROOT=/usr/lib/ocf; $OCF_ROOT/resource.d/pacemaker/Dummy meta-data

 <?xml version="1.0"?>
 <!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
 <resource-agent name="Dummy" version="0.9">
 <version>1.0</version>

 <longdesc lang="en-US">
 This is a Dummy Resource Agent. It does absolutely nothing except
 keep track of whether its running or not.
 Its purpose in life is for testing and to serve as a template for RA writers.
 </longdesc>
 <shortdesc lang="en-US">Dummy resource agent</shortdesc>

 <parameters>
 <parameter name="state" unique="1">
 <longdesc lang="en-US">
 Location to store the resource state in.
 </longdesc>
 <shortdesc lang="en-US">State file</shortdesc>
 <content type="string" default="/var/run//Dummy-{OCF_RESOURCE_INSTANCE}.state" />
 </parameter>

 <parameter name="dummy" unique="0">
 <longdesc lang="en-US">
 Dummy attribute that can be changed to cause a reload
 </longdesc>
 <shortdesc lang="en-US">Dummy attribute that can be changed to cause a reload</
shortdesc>
 <content type="string" default="blah" />
 </parameter>
 </parameters>

 <actions>

Resource Operations

35

 <action name="start" timeout="90" />
 <action name="stop" timeout="100" />
 <action name="monitor" timeout="20" interval="10" depth="0" start-delay="0" />
 <action name="reload" timeout="90" />
 <action name="migrate_to" timeout="100" />
 <action name="migrate_from" timeout="90" />
 <action name="meta-data" timeout="5" />
 <action name="validate-all" timeout="30" />
 </actions>
 </resource-agent>

Example 5.6. Displaying the metadata for the Dummy resource agent template

5.7. Resource Operations

5.7.1. Monitoring Resources for Failure
By default, the cluster will not ensure your resources are still healthy. To instruct the cluster to do this,
you need to add a monitor operation to the resource's definition.

 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-check" name="monitor" interval="60s"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>

Example 5.7. An OCF resource with a recurring health check

Field Description

id Your name for the action. Must be unique.

name The action to perform. Common values: monitor,
start, stop

interval How frequently (in seconds) to perform the
operation. Default value: 0

timeout How long to wait before declaring the action has
failed.

requires What conditions need to be satisfied before this
action occurs. Allowed values:

• nothing - The cluster may start this resource at
any time

• quorum - The cluster can only start this
resource if a majority of the configured nodes
are active

• fencing - The cluster can only start this
resource if a majority of the configured nodes

Chapter 5. Cluster Resources

36

Field Description
are active and any failed or unknown nodes
have been powered off.

STONITH resources default to nothing, and all
others default to fencing if STONITH is enabled
and quorum otherwise.

on-fail The action to take if this action ever fails. Allowed
values:

• ignore - Pretend the resource did not fail

• block - Don't perform any further operations on
the resource

• stop - Stop the resource and do not start it
elsewhere

• restart - Stop the resource and start it again
(possibly on a different node)

• fence - STONITH the node on which the
resource failed

• standby - Move all resources away from the
node on which the resource failed

The default for the stop operation is fence when
STONITH is enabled and block otherwise. All
other operations default to stop.

enabled If false, the operation is treated as if it does not
exist. Allowed values: true, false

Table 5.3. Properties of an Operation

5.8. Setting Global Defaults for Operations
To set a default value for a operation option, simply add it to the op_defaults section with
crm_attribute. Thus,

crm_attribute --type op_defaults --attr-name timeout --attr-value 20s

would default each operation's timeout to 20 seconds. If an operation's definition also includes a value
for timeout, then that value would be used instead (for that operation only).

5.8.1. When Resources Take a Long Time to Start/Stop
There are a number of implicit operations that the cluster will always perform - start, stop and a non-
recurring monitor operation (used at startup to check the resource isn't already active). If one of these
is taking too long, then you can create an entry for them and simply specify a new value.

 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">

Multiple Monitor Operations

37

 <operations>
 <op id="public-ip-startup" name="monitor" interval="0" timeout="90s"/>
 <op id="public-ip-start" name="start" interval="0" timeout="180s"/>
 <op id="public-ip-stop" name="stop" interval="0" timeout="15min"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>

Example 5.8. An OCF resource with custom timeouts for its implicit actions

5.8.2. Multiple Monitor Operations
Provided no two operations (for a single resource) have the same name and interval you can have as
many monitor operations as you like. In this way you can do a superficial health check every minute
and progressively more intense ones at higher intervals.

To tell the resource agent what kind of check to perform, you need to provide each monitor with
a different value for a common parameter. The OCF standard creates a special parameter called
OCF_CHECK_LEVEL for this purpose and dictates that it is made available to the resource agent
without the normal OCF_RESKEY_ prefix.

Whatever name you choose, you can specify it by adding an instance_attributes block to the op tag.
Note that it is up to each resource agent to look for the parameter and decide how to use it.

 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-health-60" name="monitor" interval="60">
 <instance_attributes id="params-public-ip-depth-60">
 <nvpair id="public-ip-depth-60" name="OCF_CHECK_LEVEL" value="10"/>
 </instance_attributes>
 </op>
 <op id="public-ip-health-300" name="monitor" interval="300">
 <instance_attributes id="params-public-ip-depth-300">
 <nvpair id="public-ip-depth-300" name="OCF_CHECK_LEVEL" value="20"/>
 </instance_attributes>
 </op>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-level" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>

Example 5.9. An OCF resource with two recurring health checks performing different levels of checks

5.8.3. Disabling a Monitor Operation
The easiest way to stop a recurring monitor is to just delete it. However there can be times when you
only want to disable it temporarily. In such cases, simply add disabled="true" to the operation's
definition.

 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>

Chapter 5. Cluster Resources

38

 <op id="public-ip-check" name="monitor" interval="60s" disabled="true"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>

Example 5.10. Example of an OCF resource with a disabled health check

This can be achieved from the command-line by executing

cibadmin -M -X ‘<op id="public-ip-check" disabled="true"/>'

Once you've done whatever you needed to do, you can then re-enable it with

cibadmin -M -X ‘<op id="public-ip-check" disabled="false"/>'

Chapter 6.

39

Resource Constraints

Table of Contents
6.1. Scores ... 39

6.1.1. Infinity Math .. 39
6.2. Deciding Which Nodes a Resource Can Run On ... 39

6.2.1. Options ... 40
6.2.2. Asymmetrical "Opt-In" Clusters ... 40
6.2.3. Symmetrical "Opt-Out" Clusters .. 40
6.2.4. What if Two Nodes Have the Same Score .. 41

6.3. Specifying the Order Resources Should Start/Stop In ... 41
6.3.1. Mandatory Ordering ... 41
6.3.2. Advisory Ordering .. 42

6.4. Placing Resources Relative to other Resources ... 42
6.4.1. Options ... 42
6.4.2. Mandatory Placement .. 43
6.4.3. Advisory Placement ... 43

6.5. Ordering Sets of Resources .. 44
6.6. Collocating Sets of Resources .. 46

6.1. Scores
Scores of all kinds are integral to how the cluster works. Practically everything from moving a resource
to deciding which resource to stop in a degraded cluster is achieved by manipulating scores in some
way.

Scores are calculated on a per-resource basis and any node with a negative score for a resource can't
run that resource. After calculating the scores for a resource, the cluster then chooses the node with
the highest one.

6.1.1. Infinity Math
INFINITY is currently defined as 1,000,000 and addition/subtraction with it follows the following 3
basic rules:

• Any value + INFINITY = INFINITY

• Any value - INFINITY = -INFINITY

• INFINITY - INFINITY = -INFINITY

6.2. Deciding Which Nodes a Resource Can Run On
There are two alternative strategies for specifying which nodes a resources can run on. One way is to
say that by default they can run anywhere and then create location constraints for nodes that are not
allowed. The other option is to have nodes "opt-in"... to start with nothing able to run anywhere and
selectively enable allowed nodes.

Chapter 6. Resource Constraints

40

6.2.1. Options

Field Description

id A unique name for the constraint

rsc A resource name

node A node's uname

score Positive values indicate the resource can run
on this node. Negative values indicate the
resource can not run on this node. Values of +/-
INFINITY change "can" to "must".

Table 6.1. Options for Simple Location Constraints

6.2.2. Asymmetrical "Opt-In" Clusters
To create an opt-in cluster, start by preventing resources from running anywhere by default

crm_attribute --attr-name symmetric-cluster --attr-value false

Then start enabling nodes. The following fragment says that the web server prefers sles-1, the
database prefers sles-2 and both can failover to sles-3 if their most preferred node fails.

 <constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
 <rsc_location id="loc-2" rsc="Webserver" node="sles-3" score="0"/>
 <rsc_location id="loc-3" rsc="Database" node="sles-2" score="200"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-3" score="0"/>
 </constraints>

Example 6.1. Example set of opt-in location constraints

6.2.3. Symmetrical "Opt-Out" Clusters
To create an opt-out cluster, start by allowing resources to run anywhere by default

crm_attribute --attr-name symmetric-cluster --attr-value true

Then start disabling nodes. The following fragment is the equivalent of the above opt-in configuration.

 <constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
 <rsc_location id="loc-2-dont-run" rsc="Webserver" node="sles-2" score="-INFINITY"/>
 <rsc_location id="loc-3-dont-run" rsc="Database" node="sles-1" score="-INFINITY"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-2" score="200"/>
 </constraints>

Example 6.2. Example set of opt-out location constraints

Whether you should choose opt-in or opt-out depends both on your personal preference and the
make-up of your cluster. If most of your resources can run on most of the nodes, then an opt-out

What if Two Nodes Have the Same Score

41

arrangement is likely to result in a simpler configuration. On the other-hand, if most resources can only
run on a small subset of nodes an opt-in configuration might be simpler.

6.2.4. What if Two Nodes Have the Same Score
If two nodes have the same score, then the cluster will choose one. This choice may seem random
and may not be what was intended, however the cluster was not given enough information to know
what was intended.

 <constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="INFINITY"/>
 <rsc_location id="loc-2" rsc="Webserver" node="sles-2" score="INFINITY"/>
 <rsc_location id="loc-3" rsc="Database" node="sles-1" score="500"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-2" score="300"/>
 <rsc_location id="loc-5" rsc="Database" node="sles-2" score="200"/>
 </constraints>

Example 6.3. Example of two resources that prefer two nodes equally

In the example above, assuming no other constraints and an inactive cluster, Webserver would
probably be placed on sles-1 and Database on sles-2. It would likely have placed Webserver based on
the node's uname and Database based on the desire to spread the resource load evenly across the
cluster. However other factors can also be involved in more complex configurations.

6.3. Specifying the Order Resources Should Start/Stop In
The way to specify the order in which resources should start is by creating rsc_order constraints.

Field Description

id A unique name for the constraint

first The name of a resource that must be started
before the then resource is allowed to.

then The name of a resource. This resource will start
after the first resource.

score If greater than zero, the constraint is mandatory.
Otherwise it is only a suggestion. Default value:
INFINITY

symmetrical If true, which is the default, stop the resources in
the reverse order. Default value: true

Table 6.2. Properties of an Ordering Constraint

6.3.1. Mandatory Ordering
When the then resource cannot run without the first resource being active, one should use mandatory
constraints. To specify a constraint is mandatory, use a scores greater than zero. This will ensure that
the then resource will react when the first resource changes state.

• If the first resource was running and is stopped, the then resource will also be stopped (if it is
running)

Chapter 6. Resource Constraints

42

• If the first resource was not running and cannot be started, the then resource will be stopped (if it is
running)

• If the first resource is (re)started while the then resource is running, the then resource will be
stopped and restarted

6.3.2. Advisory Ordering
On the other-hand, when score="0" is specified for a constraint, the constraint is considered optional
and only has an effect when both resources are stopping and or starting. Any change in state by the
first resource will have no effect on the then resource.

 <constraints>
 <rsc_order id="order-1" first="Database" then="Webserver" />
 <rsc_order id="order-2" first="IP" then="Webserver" score="0"/>
 </constraints>

Example 6.4. Example of an optional and mandatory ordering constraint

Some additional information on ordering constraints can be found in the document Ordering
Explained1

6.4. Placing Resources Relative to other Resources
When the location of one resource depends on the location of another one, we call this colocation.

There is an important side-effect of creating a colocation constraint between two resources, that
it affects the order in which resources are assigned to a node. If you think about it, its somewhat
obvious. You can't place A relative to B unless you know where B is 2. So when you are creating
colocation constraints, it is important to consider whether you should colocate A with B or B with A.

Another thing to keep in mind is that, assuming A is collocated with B, the cluster will also take into
account A's preferences when deciding which node to choose for B. For a detailed look at exactly how
this occurs, see the Colocation Explained3 document.

6.4.1. Options

Field Description

id A unique name for the constraint

rsc The colocation source. If the constraint cannot be
satisfied, the cluster may decide not to allow the
resource to run at all.

with-rsc The colocation target. The cluster will decide
where to put this resource first and then decide
where to put the resource in the rsc field

1 http://www.clusterlabs.org/mediawiki/images/d/d6/Ordering_Explained.pdf
While the human brain is sophisticated enough to read the constraint in any order and choose the correct one depending on the
situation, the cluster is not quite so smart. Yet.
3 http://www.clusterlabs.org/mediawiki/images/6/61/Colocation_Explained.pdf

http://www.clusterlabs.org/mediawiki/images/d/d6/Ordering_Explained.pdf
http://www.clusterlabs.org/mediawiki/images/d/d6/Ordering_Explained.pdf
http://www.clusterlabs.org/mediawiki/images/6/61/Colocation_Explained.pdf
http://www.clusterlabs.org/mediawiki/images/d/d6/Ordering_Explained.pdf
http://www.clusterlabs.org/mediawiki/images/6/61/Colocation_Explained.pdf

Mandatory Placement

43

Field Description

score Positive values indicate the resource should run
on the same node. Negative values indicate the
resources should not run on the same node.
Values of +/- INFINITY change "should" to
"must".

Table 6.3. Properties of a Collocation Constraint

6.4.2. Mandatory Placement
Mandatory placement occurs any time the constraint's score is +INFINITY or -INFINITY. In
such cases, if the constraint can't be satisfied, then the rsc resource is not permitted to run. For
score=INFINITY, this includes cases where the with-rsc resource is not active.

If you need resource1 to always run on the same machine as resource2, you would add the following
constraint:

 <rsc_colocation id="colocate" rsc="resource1" with-rsc="resource2" score="INFINITY"/>

Example 6.5. An example colocation constraint

Remember, because INFINITY was used, if resource2 can't run on any of the cluster nodes (for
whatever reason) then resource1 will not be allowed to run.

Alternatively, you may want the opposite... that resource1 cannot run on the same machine as
resource2. In this case use score="-INFINITY"

 <rsc_colocation id="anti-colocate" rsc="resource1" with-rsc="resource2" score="-INFINITY"/>

Example 6.6. An example anti-colocation constraint

Again, by specifying -INFINTY, the constraint is binding. So if the only place left to run is where
resource2 already is, then resource1 may not run anywhere.

6.4.3. Advisory Placement
If mandatory placement is about "must" and "must not", then advisory placement is the "I'd prefer if"
alternative. For constraints with scores greater than -INFINITY and less than INFINITY, the cluster
will try and accommodate your wishes but may ignore them if the alternative is to stop some of the
cluster resources.

Like in life, where if enough people prefer something it effectively becomes mandatory, advisory
colocation constraints can combine with other elements of the configuration to behave as if they were
mandatory.

 <rsc_colocation id="colocate-maybe" rsc="resource1" with-rsc="resource2" score="500"/>

Example 6.7. An example advisory-only colocation constraint

Chapter 6. Resource Constraints

44

6.5. Ordering Sets of Resources
A common situation is for an administrator to create a chain of ordered resources, such as:

 <constraints>
 <rsc_order id="order-1" first="A" then="B" />
 <rsc_order id="order-2" first="B" then="C" />
 <rsc_order id="order-3" first="C" then="D" />
 </constraints>

Example 6.8. A chain of ordered resources

Visual representation of the four resources' start order for the above constraints
Figure 6.1. Ordered Set

To simplify this situation, there is an alternate format for ordering constraints

 <constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-example" sequential="true">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
 </constraints>

Example 6.9. A chain of ordered resources expressed as a set

Note
Resource sets have the same ordering semantics as groups.

 <group id="dummy">
 <primitive id="A" .../>
 <primitive id="B" .../>
 <primitive id="C" .../>
 <primitive id="D" .../>
 </group>

Example 6.10. A group resource with the equivalent ordering rules

While the set-based format is not less verbose, it is significantly easier to get right and maintain. It can
also be expanded to allow ordered sets of (un)ordered resources. In the example below, rscA and

Ordering Sets of Resources

45

rscB can both start in parallel, as can rscC and rscD, however rscC and rscD can only start once both
rscA and rscB are active.

 <constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="false">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
 </constraints>

Example 6.11. Ordered sets of unordered resources

Visual representation of the start order for two ordered sets of unordered resources
Figure 6.2. Two Sets of Unordered Resources

Of course either or both sets of resources can also be internally ordered (by setting
sequential="true") and there is no limit to the number of sets that can be specified.

 <constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="true">

Chapter 6. Resource Constraints

46

 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 <resource_set id="ordered-set-3" sequential="false">
 <resource_ref id="E"/>
 <resource_ref id="F"/>
 </resource_set>
 </rsc_order>
 </constraints>

Example 6.12. Advanced use of set ordering - Three ordered sets, two of which are internally
unordered

Visual representation of the start order for the three sets defined above
Figure 6.3. Three Resources Sets

6.6. Collocating Sets of Resources
Another common situation is for an administrator to create a set of collocated resources. Previously
this possible either by defining a resource group (See Section 10.1, “Groups - A Syntactic Shortcut”)
which could not always accurately express the design; or by defining each relationship as an individual
constraint, causing a constraint explosion as the number of resources and combinations grew.

 <constraints>
 <rsc_colocation id="coloc-1" rsc="B" with-rsc="A" score="INFINITY"/>
 <rsc_colocation id="coloc-2" rsc="C" with-rsc="B" score="INFINITY"/>
 <rsc_colocation id="coloc-3" rsc="D" with-rsc="C" score="INFINITY"/>
 </constraints>

Example 6.13. A chain of collocated resources

To make things easier, we allow an alternate form of colocation constraints using resource_sets.
Just like the expanded version, a resource that can't be active also prevents any resource that must
be collocated with it from being active. For example if B was not able to run, then both C (and by
inference D) must also remain stopped.

 <constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="collocated-set-example" sequential="true">
 <resource_ref id="A"/>
 <resource_ref id="B"/>

Collocating Sets of Resources

47

 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_colocation>
 </constraints>

Example 6.14. The equivalent colocation chain expressed using resource_sets

Note
Resource sets have the same colocation semantics as groups.

 <group id="dummy">
 <primitive id="A" .../>
 <primitive id="B" .../>
 <primitive id="C" .../>
 <primitive id="D" .../>
 </group>

Example 6.15. A group resource with the equivalent colocation rules

This notation can also be used in this context to tell the cluster that a set of resources must all be
located with a common peer, but have no dependencies on each other. In this scenario, unlike the
previous on, B would be allowed to remain active even if A or C (or both) were inactive.

 <constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="collocated-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 </resource_set>
 <resource_set id="collocated-set-2" sequential="true">
 <resource_ref id="D"/>
 </resource_set>
 </rsc_colocation>
 </constraints>

Example 6.16. Using colocation sets to specify a common peer.

Of course there is no limit to the number and size of the sets used. The only thing that matters is that
in order for any member of set N to be active, all the members of set N+1 must also be active (and
naturally on the same node), and that if a set has sequential="true", then in order for member M
to be active, member M+1 must also be active. You can even specify the role in which the members of
a set must be in using the set's role attribute.

 <constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="collocated-set-1" sequential="true">
 <resource_ref id="A"/>

Chapter 6. Resource Constraints

48

 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="collocated-set-2" sequential="false">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 <resource_ref id="E"/>
 </resource_set>
 <resource_set id="collocated-set-2" sequential="true" role="Master">
 <resource_ref id="F"/>
 <resource_ref id="G"/>
 </resource_set>
 </rsc_colocation>
 </constraints>

Example 6.17. A colocation chain where the members of the middle set have no inter-dependencies
and the last has master status.

Visual representation of a colocation chain where the
members of the middle set have no inter-dependencies

Figure 6.4. Another Three Resources Sets

Chapter 7.

49

Receiving Notification of Cluster
Events

Table of Contents
7.1. Configuring Email Notifications .. 49
7.2. Configuring SNMP Notifications ... 49

7.1. Configuring Email Notifications

7.2. Configuring SNMP Notifications

50

Chapter 8.

51

Rules

Table of Contents
8.1. Node Attribute Expressions ... 51
8.2. Time/Date Based Expressions .. 52

8.2.1. Date Specifications .. 53
8.2.2. Durations .. 54

8.3. Using Rules to Determine Resource Location .. 55
8.3.1. Using score-attribute Instead of score ... 56

8.4. Using Rules to Control Resource Options .. 56
8.5. Using Rules to Control Cluster Options ... 57
8.6. Ensuring Time Based Rules Take Effect .. 58

Rules can be used to make your configuration more dynamic. One common example is to set one
value for resource-stickiness during working hours, to prevent resources from being moved back to
their most preferred location, and another on weekends when no-one is around to notice an outage.

Another use of rules might be to assign machines to different processing groups (using a node
attribute) based on time and to then use that attribute when creating location constraints.

Each rule can contain a number of expressions, date-expressions and even other rules. The results of
the expressions are combined based on the rule's boolean-op field to determine if the rule ultimately
evaluates to true or false. What happens next depends on the context in which the rule is being used.

Field Description

role Limits the rule to only apply when the resource
is in that role. Allowed values: Started, Slave,
Master. NOTE: A rule with role="Master" can not
determine the initial location of a clone instance.
It will only affect which of the active instances will
be promoted.

score The score to apply if the rule evaluates to "true".
Limited to use in rules that are part of location
constraints.

score-attribute The node attribute to look up and use as a score
if the rule evaluates to "true". Limited to use in
rules that are part of location constraints.

boolean-op How to combine the result of multiple expression
objects. Allowed values: and, or

Table 8.1. Properties of a Rule

8.1. Node Attribute Expressions
Expression objects are used to control a resource based on the attributes defined by a node or nodes.
In addition to any attributes added by the administrator, each node has a built-in node attribute called
#uname that can also be used.

Chapter 8. Rules

52

Field Description

value User supplied value for comparison

attribute The node attribute to test

type Determines how the value(s) should be tested.
Allowed values: integer, string, version

operation The comparison to perform. Allowed values:

• lt,- True if the node attribute's value is less
than value

• gt - True if the node attribute's value is greater
than value

• lte- True if the node attribute's value is less
than or equal to value

• gte- True if the node attribute's value is greater
than or equal to value

• eq- True if the node attribute's value is equal to
value

• ne - True if the node attribute's value is not
equal to value

• defined- True if the node has an the named
attribute

• not_defined- True if the node does not have
the named attribute

Table 8.2. Properties of an Expression

8.2. Time/Date Based Expressions
As the name suggests, date_expressions are used to control a resource or cluster option based on the
current date/time. They can contain an optional date_spec and/or duration object depending on
the context.

Field Description

start A date/time conforming to the ISO8601
specification.

end A date/time conforming to the ISO8601
specification. Can be inferred by supplying a
value for start and a duration.

operation Compares the current date/time with the start
and/or end date, depending on the context.
Allowed values:

• gt - True if the current date/time is after start

• lt - True if the current date/time is before end

Date Specifications

53

Field Description
• in-range - True if the current date/time is after

start and before end

• date-spec - performs a cron-like comparison
between the contents of date_spec and now

Table 8.3. Properties of a Date Expression

Note
Because the comparisons (except for date_spec) include the time, the eq, neq, gte
and lte operators have not been implemented.

8.2.1. Date Specifications
date_spec objects are used to create cron-like expressions relating to time. Each field can contain a
single number or a single range. Instead of defaulting to zero, any field not supplied is ignored.

For example, monthdays="1" matches the first day of every month and hours="09-17"
matches the hours between 9am and 5pm inclusive). However at this time one cannot specify
weekdays="1,2" or weekdays="1-2,5-6" since they contain multiple ranges. Depending on
demand, this may be implemented in a future release.

Field Description

id A unique name for the date

hours Allowed values: 0-23

monthdays Allowed values: 0-31 (depending on current
month and year)

weekdays Allowed values: 1-7 (1=Monday, 7=Sunday)

yeardays Allowed values: 1-366 (depending on the current
year)

months Allowed values: 1-12

weeks Allowed values: 1-53 (depending on weekyear)

years Year according the Gregorian calendar

weekyears May differ from Gregorian years.

Eg. "2005-001 Ordinal" is also "2005-01-01
Gregorian" is also "2004-W53-6 Weekly"

moon Allowed values: 0..7 (0 is new, 4 is full
moon). Seriously, you can use this. This was
implemented to demonstrate the ease with which
new comparisons could be added.

Table 8.4. Properties of a Date Spec

Chapter 8. Rules

54

8.2.2. Durations
Durations are used to calculate a value for end when one is not supplied to in_range operations. They
contain the same fields as date_spec objects but without the limitations (ie. you can have a duration
of 19 days). Like date_specs, any field not supplied is ignored.

8.2.2.1. Sample Time Based Expressions

 <rule id="rule1">
 <date_expression id="date_expr1" start="2005-001" operation="in_range">
 <duration years="1"/>
 </date_expression>
 </rule>

Example 8.1. True if now is any time in the year 2005

 <rule id="rule2">
 <date_expression id="date_expr2" operation="date_spec">
 <date_spec years="2005"/>
 </date_expression>
 </rule>

Example 8.2. Equivalent expression.

 <rule id="rule3">
 <date_expression id="date_expr3" operation="date_spec">
 <date_spec hours="9-16" days="1-5"/>
 </date_expression>
 </rule>

Example 8.3. 9am-5pm, Mon-Friday

 <rule id="rule4" boolean_op="or">
 <date_expression id="date_expr4-1" operation="date_spec">
 <date_spec hours="9-16" days="1-5"/>
 </date_expression>
 <date_expression id="date_expr4-2" operation="date_spec">
 <date_spec days="6"/>
 </date_expression>
 </rule>

Example 8.4. 9am-6pm, Mon-Friday, or all day saturday

 <rule id="rule5" boolean_op="and">
 <rule id="rule5-nested1" boolean_op="or">
 <date_expression id="date_expr5-1" operation="date_spec">

Using Rules to Determine Resource Location

55

 <date_spec hours="9-16"/>
 </date_expression>
 <date_expression id="date_expr5-2" operation="date_spec">
 <date_spec hours="21-23"/>
 </date_expression>
 </rule>
 <date_expression id="date_expr5-3" operation="date_spec">
 <date_spec days="1-5"/>
 </date_expression>
 </rule>

Example 8.5. 9am-5pm or 9pm-12pm, Mon-Friday

 <rule id="rule6" boolean_op="and">
 <date_expression id="date_expr6-1" operation="date_spec">
 <date_spec weekdays="1"/>
 </date_expression>
 <date_expression id="date_expr6-2" operation="in_range" start="2005-03-01"
 end="2005-04-01"/>
 </rule>

Example 8.6. Mondays in March 2005

NOTE: Because no time is specified, 00:00:00 is implied.

This means that the range includes all of 2005-03-01 but none of 2005-04-01.

You may wish to write end="2005-03-31T23:59:59" to avoid confusion.

 <rule id="rule7" boolean_op="and">
 <date_expression id="date_expr7" operation="date_spec">
 <date_spec weekdays="5" monthdays="13" moon="4"/>
 </date_expression>
 </rule>

Example 8.7. A full moon on Friday the 13th

8.3. Using Rules to Determine Resource Location
If the constraint's outer-most rule evaluates to false, the cluster treats the constraint as if it was not
there. When the rule evaluates to true, the node's preference for running the resource is updated with
the score associated with the rule.

If this sounds familiar, its because you have been using a simplified syntax for location constraint rules
already. Consider the following location constraint:

 <rsc_location id="dont-run-apache-on-c001n03" rsc="myApacheRsc" score="-INFINITY"
 node="c001n03"/>

Example 8.8. Prevent myApacheRsc from running on c001n03

This constraint can be more verbosely written as:

Chapter 8. Rules

56

 <rsc_location id="dont-run-apache-on-c001n03" rsc="myApacheRsc">
 <rule id="dont-run-apache-rule" score="-INFINITY">
 <expression id="dont-run-apache-expr" attribute="#uname" operation="eq" value="c00n03"/
>
 </rule>
 </rsc_location>

Example 8.9. Prevent myApacheRsc from running on c001n03 - expanded version

The advantage of using the expanded form is that one can then add extra clauses to the rule, such
as limiting the rule such that it only applies during certain times of the day or days of the week (this is
discussed in subsequent sections).

It also allows us to match on node properties other than its name. If we rated each machine's CPU
power such that the cluster had the following nodes section:

 <nodes>
 <node id="uuid1" uname="c001n01" type="normal">
 <instance_attributes id="uuid1-custom_attrs">
 <nvpair id="uuid1-cpu_mips" name="cpu_mips" value="1234"/>
 </instance_attributes>
 </node>
 <node id="uuid2" uname="c001n02" type="normal">
 <instance_attributes id="uuid2-custom_attrs">
 <nvpair id="uuid2-cpu_mips" name="cpu_mips" value="5678"/>
 </instance_attributes>
 </node>
 </nodes>

Example 8.10. A sample nodes section for use with score-attribute

then we could prevent resources from running on underpowered machines with the rule

 <rule id="need-more-power-rule" score="-INFINITY">
 <expression id=" need-more-power-expr" attribute="cpu_mips" operation="lt"
 value="3000"/>
 </rule>

8.3.1. Using score-attribute Instead of score
When using score-attribute instead of score, each node matched by the rule has its score adjusted
differently, according to its value for the named node attribute. Thus in the previous example, if a rule
used score-attribute="cpu_mips", c001n01 would have its preference to run the resource
increased by 1234 whereas c001n02 would have its preference increased by 5678.

8.4. Using Rules to Control Resource Options
Often some cluster nodes will be different from their peers, sometimes these differences (the location
of a binary or the names of network interfaces) require resources be configured differently depending
on the machine they're hosted on.

Using Rules to Control Cluster Options

57

By defining multiple instance_attributes objects for the resource and adding a rule to each, we
can easily handle these special cases.

In the example below, mySpecialRsc will use eth1 and port 9999 when run on node1, eth2 and port
8888 on node2 and default to eth0 and port 9999 for all other nodes.

 <primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
 <instance_attributes id="special-node1" score="3">
 <rule id="node1-special-case" score="INFINITY" >
 <expression id="node1-special-case-expr" attribute="#uname" operation="eq" value="node1"/
>
 </rule>
 <nvpair id="node1-interface" name="interface" value="eth1"/>
 </instance_attributes>
 <instance_attributes id="special-node2" score="2" >
 <rule id="node2-special-case" score="INFINITY">
 <expression id="node2-special-case-expr" attribute="#uname" operation="eq" value="node2"/
>
 </rule>
 <nvpair id="node2-interface" name="interface" value="eth2"/>
 <nvpair id="node2-port" name="port" value="8888"/>
 </instance_attributes>
 <instance_attributes id="defaults" score="1" >
 <nvpair id="default-interface" name="interface" value="eth0"/>
 <nvpair id="default-port" name="port" value="9999"/>
 </instance_attributes>
 </primitive>

Example 8.11. Defining different resource options based on the node name

The order in which instance_attributes objects are evaluated is determined by their score
(highest to lowest). If not supplied, score defaults to zero and objects with an equal score are
processed in listed order. If the instance_attributes object does not have a rule or has a
rule that evaluates to true, then for any parameter the resource does not yet have a value for, the
resource will use the parameter values defined by the instance_attributes object.

8.5. Using Rules to Control Cluster Options
Controlling cluster options is achieved in much the same manner as specifying different resource
options on different nodes.

The difference is that because they are cluster options, one cannot (or should not because they
wont work) use attribute based expressions. The following example illustrates how to set a different
resource-stickiness value during and outside of work hours. This allows resources to
automatically move back to their most preferred hosts, but at a time that (in theory) does not interfere
with business activities.

 <rsc_defaults>
 <meta_attributes id="core-hours" score="2">
 <rule id="core-hour-rule" score="0">
 <date_expression id="nine-to-five-Mon-to-Fri" operation="date_spec">
 <date_spec id="nine-to-five-Mon-to-Fri-spec" hours="9-17" weekdays="1-5"/>
 </date_expression>
 </rule>

Chapter 8. Rules

58

 <nvpair id="core-stickiness" name="resource-stickiness" value="INFINITY"/>
 </meta_attributes>
 <meta_attributes id="after-hours" score="1" >
 <nvpair id="after-stickiness" name="resource-stickiness" value="0"/>
 </meta_attributes>
 </rsc_defaults>

Example 8.12. Set resource-stickiness=INFINITY Mon-Fri between 9am and 6pm, and resource-
stickiness=0 all other times

8.6. Ensuring Time Based Rules Take Effect
A Pacemaker cluster is an event driven system. As such, it wont recalculate the best place for
resources to run in unless something (like a resource failure or configuration change) happens. This
can mean that a location constraint that only allows resource X to run between 9am and 5pm is not
enforced.

If you rely on time based rules, it is essential that you set the cluster-recheck-interval option.
This tells the cluster to periodically recalculate the ideal state of the cluster. For example, if you
set cluster-recheck-interval=5m, then sometime between 9:00 and 9:05 the cluster would
notice that it needs to start resource X, and between 17:00 and 17:05 it would realize it needed to be
stopped.

Note that the timing of the actual start and stop actions depends on what else needs to be performed
first.

Chapter 9.

59

Advanced Configuration

Table of Contents
9.1. Connecting to the Cluster Configuration from a Remote Machine .. 59
9.2. Specifying When Recurring Actions are Performed ... 60
9.3. Moving Resources .. 60

9.3.1. Manual Intervention ... 60
9.3.2. Moving Resources Due to Failure ... 62
9.3.3. Moving Resources Due to Connectivity Changes ... 62
9.3.4. Resource Migration .. 65

9.4. Reusing Rules, Options and Sets of Operations ... 66
9.5. Reloading Services After a Definition Change .. 67

9.1. Connecting to the Cluster Configuration from a Remote
Machine
Provided Pacemaker is installed on a machine, it is possible to connect to the cluster even if the
machine itself is not a part of it. To do this, one simply sets up a number of environment variables and
runs the same commands as you would when working on a cluster node.

Environment Variable Description

CIB_user The user to connect as. Needs to be part of the
hacluster group on the target host. Defaults to
$USER

CIB_passwd The user's password. Read from the command
line if unset

CIB_server The host to contact. Defaults to localhost.

CIB_port The port on which to contact the server.
Required.

CIB_encrypted Encrypt network traffic. Defaults to true.

Table 9.1. Environment Variables Used to Connect to Remote Instances of the CIB

So if c001n01 is an active cluster node and is listening on 1234 for connections, and someguy is a
member of the hacluster group. Then the following would prompt for someguy's password and return
the cluster's current configuration:

 export CIB_port=1234; export CIB_server=c001n01; export CIB_user=someguy; cibadmin -Q

For security reasons, the cluster does not listen remote connections by default. If you wish to allow
remote access, you need to set the remote-tls-port (encrypted) or remote-clear-port
(unencrypted) top-level options (ie. those kept in the cib tag , like num_updates and epoch).

Field Description

remote-tls-port Listen for encrypted remote connections on this
port. Default: none

Chapter 9. Advanced Configuration

60

Field Description

remote-clear-port Listen for plaintext remote connections on this
port. Default: none

Table 9.2. Extra top-level CIB options for remote access

9.2. Specifying When Recurring Actions are Performed
By default, recurring actions are scheduled relative to when the resource started. So if your resource
was last started at 14:32 and you have a backup set to be performed every 24 hours, then the backup
will always run at in the middle of the business day - hardly desirable.

To specify a date/time that the operation should be relative to, set the operation's interval-origin.
The cluster uses this point to calculate the correct start-delay such that the operation will occur at
origin + (interval * N).

So if the operation's interval is 24h, it's interval-origin is set to 02:00 and it is currently 14:32, then the
cluster would initiate the operation with a start delay of 11 hours and 28 minutes. If the resource is
moved to another node before 2am, then the operation is of course cancelled.

The value specified for interval and interval-origin can be any date/time conforming to the
ISO8601 standard1. By way of example, to specify an operation that would run on the first Monday of
2009 and every Monday after that you would add:

 <op id="my-weekly-action" name="custom-action" interval="P7D" interval-origin="2009-W01-1"/>

Example 9.1. Specifying a Base for Recurring Action Intervals

9.3. Moving Resources

9.3.1. Manual Intervention
There are primarily two occasions when you would want to move a resource from it's current location:
when the whole node is under maintenance and when a single resource needs to be moved.

In the case where everything needs to move, since everything eventually comes down to a score, you
could create constraints for every resource you have preventing it from running on that node. While
the configuration can seem convoluted at times, not even we would require this of administrators.

Instead one can set a special node attribute which tells the cluster "don't let anything run here". There
is even a helpful tool to help query and set it called crm_standby. To check the standby status of the
current machine, simply run:

crm_standby --get-value

A value of true indicates that the node is NOT able to host any resources and a value of false indicates
that it CAN. You can also check the status of other nodes in the cluster by specifying the --node-
uname option. Eg.

crm_standby --get-value --node-uname sles-2

1 http://en.wikipedia.org/wiki/ISO_8601

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Manual Intervention

61

To change the current node's standby status, use --attr-value instead of --get-value. Eg.

crm_standby --attr-value

Again, you can change another host's value by supplying a host name with --node-uname.

When only one resource is required to move, we do this by creating location constraints. However
once again we provide a user friendly shortcut as part of the crm_resource command which creates
and modifies the extra constraints for you. If Email was running on sles-1 and you wanted it moved to
a specific location, the command would look something like:

crm_resource -M -r Email -H sles-2

Behind the scenes, the tool will create the following location constraint:

 <rsc_location rsc="Email" node="sles-2" score="INFINITY"/>

It is important to note that subsequent invocations of crm_resource -M are not cumulative. So if you
ran:

crm_resource -M -r Email -H sles-2

crm_resource -M -r Email -H sles-3

then it is as if you had never performed the first command.

To allow the resource to move back again, use:

crm_resource -U -r Email

Note the use of the word allow. The resource can move back to its original location but, depending on
resource stickiness, it may stay where it is. To be absolutely certain that it moves back to sles-1, move
it there before issuing the call to crm_resource -U:

crm_resource -M -r Email -H sles-1

crm_resource -U -r Email

Alternatively, if you only care that the resource should be moved from its current location, try

crm_resource -M -r Email

Which will instead create a negative constraint. Eg.

<rsc_location rsc="Email" node="sles-1" score="-INFINITY"/>

This will achieve the desired effect but will also have long-term consequences. As the tool will warn
you, the creation of a -INFINITY constraint will prevent the resource from running on that node until
crm_resource -U is used. This includes the situation where every other cluster node is no longer
available.

In some cases, such as when resource stickiness is set to INFINITY, it is possible that you will end
up with the problem described in Section 6.2.4, “What if Two Nodes Have the Same Score”. The tool
can detect some of these cases and deals with them by also creating both a positive and negative
constraint. Eg.

Email prefers sles-1 with a score of -INFINITY

Chapter 9. Advanced Configuration

62

Email prefers sles-2 with a score of INFINITY

which has the same long-term consequences as discussed earlier.

9.3.2. Moving Resources Due to Failure
New in 1.0 is the concept of a migration threshold 2. Simply define migration-threshold=N for a
resource and it will migrate to a new node after N failures. There is no threshold defined by default. To
determine the resource's current failure status and limits, use crm_mon --failcounts

By default, once the threshold has been reached, node will no longer be allowed to run the failed
resource until the administrator manually resets the resource's failcount using crm_failcount (after
hopefully first fixing the failure's cause). However it is possible to expire them by setting the resource's
failure-timeout option.

So a setting of migration-threshold=2 and failure-timeout=60s would cause the resource
to move to a new node after 2 failures and potentially allow it to move back (depending on the
stickiness and constraint scores) after one minute.

There are two exceptions to the migration threshold concept and occur when a resource either fails to
start or fails to stop. Start failures cause the failcount to be set to INFINITY and thus always cause
the resource to move immediately.

Stop failures are slightly different and crucial. If a resource fails to stop and STONITH is enabled, then
the cluster will fence the node in order to be able to start the resource elsewhere. If STONITH is not
enabled, then the cluster has no way to continue and will not try to start the resource elsewhere, but
will try to stop it again after the failure timeout.

Important
Please read Section 8.6, “Ensuring Time Based Rules Take Effect” before enabling this
option.

9.3.3. Moving Resources Due to Connectivity Changes
Setting up the cluster to move resources when external connectivity is lost, is a two-step process.

9.3.3.1. Tell Pacemaker to monitor connectivity
To do this, you need to add a ping resource to the cluster. The ping resource uses the system utility
of the same name to a test if list of machines (specified by DNS hostname or IPv4/ IPv6 address) are
reachable and uses the results to maintain a node attribute normally called pingd. 3

Note
Older versions of Heartbeat required users to add ping nodes to ha.cf - this is no longer
required.

The naming of this option was unfortunate as it is easily confused with true migration, the process of moving a resource from
one node to another without stopping it. Xen virtual guests are the most common example of resources that can be migrated in
this manner.
The attribute name is customizable which allows multiple ping groups to be defined

Moving Resources Due to Connectivity Changes

63

Important
Older versions of Pacemaker used a custom binary called pingd for this functionality, this
is now deprecated in favor of ping. If your version of Pacemaker does not contain the ping
agent, you can download the latest version from: http://hg.clusterlabs.org/pacemaker/
stable-1.0/raw-file/tip/extra/resources/ping

Normally the resource will run on all cluster nodes, which means that you'll need to create a clone. A
template for this can be found below along with a description of the most interesting parameters.

Field Description

dampen The time to wait (dampening) for further changes
occur. Use this to prevent a resource from
bouncing around the cluster when cluster nodes
notice the loss of connectivity at slightly different
times.

multiplier The number by which to multiply the number of
connected ping nodes by. Useful when there are
multiple ping nodes configured.

host_list The machines to contact in order to determine
the current connectivity status. Allowed values
include resolvable DNS hostnames, IPv4 and
IPv6 addresses.

Table 9.3. Common Options for a 'ping' Resource

 <clone id="Connected">
 <primitive id="ping" provider="pacemaker" class="ocf" type="ping">
 <instance_attributes id="ping-attrs">
 <nvpair id="pingd-dampen" name="dampen" value="5s"/>
 <nvpair id="pingd-multiplier" name="multiplier" value="1000"/>
 <nvpair id="pingd-hosts" name="host_list" value="my.gateway.com www.bigcorp.com"/>
 </instance_attributes>
 <operations>
 <op id="ping-monitor-60s" interval="60s" name="monitor"/>
 </operations>
 </primitive>
 </clone>

Example 9.2. An example ping cluster resource, checks node connectivity once every minute

9.3.3.2. Tell Pacemaker how to interpret the connectivity data
NOTE: Before reading the following, please make sure you have read and understood Chapter 8,
Rules above.

There are a number of ways to use the connectivity data provided by Heartbeat. The most common
setup is for people to have a single ping node and want to prevent the cluster from running a resource
on any unconnected node.

http://hg.clusterlabs.org/pacemaker/stable-1.0/raw-file/tip/extra/resources/ping
http://hg.clusterlabs.org/pacemaker/stable-1.0/raw-file/tip/extra/resources/ping

Chapter 9. Advanced Configuration

64

 <rsc_location id="WebServer-no-connectivity" rsc="Webserver">
 <rule id="ping-exclude-rule" score="-INFINITY" >
 <expression id="ping-exclude" attribute="pingd" operation="not_defined"/>
 </rule>
 </rsc_location>

Example 9.3. Don't run on unconnected nodes

A more complex setup is to have a number of ping nodes configured. You can require the cluster to
only run resources on nodes that can connect to all (or a minimum subset) of them

 <rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score="-INFINITY" >
 <expression id="ping-prefer" attribute="pingd" operation="lt" value="3000"/>
 </rule>
 </rsc_location>

Example 9.4. Run only on nodes connected to 3 or more ping nodes (assumes multiplier is set to
1000)

or instead you can tell the cluster only to prefer nodes with the most connectivity. Just be sure to set
the multiplier to a value higher than that of resource-stickiness (and don't set either of them to
INFINITY).

 <rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>
 </rule>
 </rsc_location>

Example 9.5. Prefer the node with the most connected ping nodes

It is perhaps easier to think of this in terms of the simple constraints that the cluster translates it into.
For example, if sles-1 is connected to all 5 ping nodes but sles-2 is only connected to 2, then it would
be as if you instead had the following constraints in your configuration:

 <rsc_location id="ping-1" rsc="Webserver" node="sles-1" score="5000"/>
 <rsc_location id="ping-2" rsc="Webserver" node="sles-2" score="2000"/>

Figure 9.1. How the cluster translates the pingd constraint

The advantage being that you don't have to manually update them whenever your network
connectivity changes.

You can also combine the concepts above into something even more complex. The example
below shows how you can prefer the node with the most connected ping nodes provided they have
connectivity to at least three (assuming multiplier is set to 1000).

Resource Migration

65

 <rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-exclude-rule" score="-INFINITY" >
 <expression id="ping-exclude" attribute="pingd" operation="lt" value="3000"/>
 </rule>
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>
 </rule>
 </rsc_location>

Example 9.6. A more complex example of choosing a location based on connectivity

9.3.4. Resource Migration
Some resources, such as Xen virtual guests, are able to move to another location without lose of
state. We call this resource migration and is different from the normal practice of stopping the resource
on the first machine and starting it elsewhere.

Not all resources are able to migrate, see the Migration Checklist below, and those that can wont do
so in all situations. Conceptually there are two requirements from which the other prerequisites follow:

• the resource must be active and healthy at the old location

• everything required for the resource to run must be available on both the old and new locations

The cluster is able to accommodate both push and pull migration models by requiring the
resource agent to support two new actions: migrate_to (performed on the current location) and
migrate_from (performed on the destination).

In push migration, the process on the current location transfers the to the new location where is it later
activated. In this scenario, most of the work would be done in the migrate_to action and, if anything,
the activation would occur during migrate_from.

Conversely for pull, the migrate_to action is practically empty and migrate_from does most of the
work, extracting the relevant resource state from the old location and activating it.

There is no wrong or right way to implement migration for your service, as long as it works.

9.3.4.1. Migration Checklist
• The resource may not be a clone.

• The resource must use an OCF style agent.

• The resource must not be in a failed or degraded state.

• The resource must not, directly or indirectly, depend on any primitive or group resources.

• The resources must support two new actions: migrate_to and migrate_from and advertise them in its
metadata.

• The resource must have the allow-migrate meta-attribute set to true (not the default).

If the resource depends on a clone, and at the time the resource needs to be move, the clone has
instances that are stopping and instances that are starting, then the resource will be moved in the

Chapter 9. Advanced Configuration

66

traditional manner. The Policy Engine is not yet able to model this situation correctly and so takes the
safe (yet less optimal) path.

9.4. Reusing Rules, Options and Sets of Operations
Sometimes a number of constraints need to use the same set of rules and resources need to set the
same options an parameters. To simplify this situation, you can refer to an existing object using an id-
ref instead of an id.

So if for one resource you have

 <rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>
 </rule>
 </rsc_location>

Then instead of duplicating the rule for all your other resources, you can instead specify

 <rsc_location id="WebDB-connectivity" rsc="WebDB">
 <rule id-ref="ping-prefer-rule"/>
 </rsc_location>

Example 9.7. Referencing rules from other constraints

Important
The cluster will insist that the rule exists somewhere. Attempting to add a reference to a
non-existing rule will cause a validation failure, as will attempting to remove a rule that is
referenced elsewhere.

The same principle applies for meta_attributes and instance_attributes as illustrated in the
example below

 <primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
 <instance_attributes id="mySpecialRsc-attrs" score="1" >
 <nvpair id="default-interface" name="interface" value="eth0"/>
 <nvpair id="default-port" name="port" value="9999"/>
 </instance_attributes>
 <meta_attributes id="mySpecialRsc-options">
 <nvpair id="failure-timeout" name="failure-timeout" value="5m"/>
 <nvpair id="migration-threshold" name="migration-threshold" value="1"/>
 <nvpair id="stickiness" name="resource-stickiness" value="0"/>
 </meta_attributes>
 <operations id="health-checks">
 <op id="health-check" name="monitor" interval="60s"/>
 <op id="health-check" name="monitor" interval="30min"/>
 </operations>
 </primitive>
 <primitive id="myOtherlRsc" class="ocf" type="Other" provider="me">
 <instance_attributes id-ref="mySpecialRsc-attrs"/>

Reloading Services After a Definition Change

67

 <meta_attributes id-ref="mySpecialRsc-options"/>
 <operations id-ref="health-checks"/>
 </primitive>

Example 9.8. Referencing attributes, options and operations from other resources

9.5. Reloading Services After a Definition Change
The cluster automatically detects changes to the definition of services it manages. However, the
normal response is to stop the service (using the old definition) and start it again (with the new
definition). This works well, but some services are smart and can be told to use a new set of options
without restarting.

To take advantage of this capability, your resource agent must:
1. Accept the reload operation and perform any required actions.

The steps required here depend completely on your application

 case $1 in
 start)
 drbd_start
 ;;
 stop)
 drbd_stop
 ;;
 reload)
 drbd_reload
 ;;
 monitor)
 drbd_monitor
 ;;
 *)
 drbd_usage
 exit $OCF_ERR_UNIMPLEMENTED
 ;;
 esac
 exit $?

Example 9.9. The DRBD Agent's Control logic for Supporting the reload Operation

2. Advertise the reload operation in the actions section of its metadata

 <?xml version="1.0"?>
 <!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
 <resource-agent name="drbd">
 <version>1.1</version>

 <longdesc lang="en">
 Master/Slave OCF Resource Agent for DRBD
 </longdesc>

 <shortdesc lang="en">
 This resource agent manages a DRBD resource as a master/slave
 resource. DRBD is a shared-nothing replicated storage device.
 </shortdesc>

Chapter 9. Advanced Configuration

68

 <parameters>
 <parameter name="drbd_resource" unique="1" required="1">
 <longdesc lang="en">The name of the drbd resource from the drbd.conf file.</
longdesc>
 <shortdesc lang="en">drbd resource name</shortdesc>
 <content type="string"/>
 </parameter>

 <parameter name="drbdconf" unique="0">
 <longdesc lang="en">Full path to the drbd.conf file.</longdesc>
 <shortdesc lang="en">Path to drbd.conf</shortdesc>
 <content type="string" default="${OCF_RESKEY_drbdconf_default}"/>
 </parameter>

 </parameters>

 <actions>
 <action name="start" timeout="240" />
 <action name="reload" timeout="240" />
 <action name="promote" timeout="90" />
 <action name="demote" timeout="90" />
 <action name="notify" timeout="90" />
 <action name="stop" timeout="100" />
 <action name="meta-data" timeout="5" />
 <action name="validate-all" timeout="30" />
 </actions>
 </resource-agent>

Example 9.10. The DRBD Agent Advertising Support for the reload Operation

3. Advertise one or more parameters that can take effect using reload.

Any parameter with the unique set to 0 is eligable to be used in this way.

 <parameter name="drbdconf" unique="0">
 <longdesc lang="en">Full path to the drbd.conf file.</longdesc>
 <shortdesc lang="en">Path to drbd.conf</shortdesc>
 <content type="string" default="${OCF_RESKEY_drbdconf_default}"/>
 </parameter>

Example 9.11. Parameter that can be changed using reload

Once these requirements are satisfied, the cluster will automatically know to reload, instead of
restarting, the resource when a non-unique fields changes.

Note
The metadata is re-read when the resource is started. This may mean that the resource
will be restarted the first time, even though you changed a parameter with unique=0

Note
If both a unique and non-unique field is changed simultaneously, the resource will still be
restarted.

Chapter 10.

69

Advanced Resource Types

Table of Contents
10.1. Groups - A Syntactic Shortcut ... 69

10.1.1. Properties .. 70
10.1.2. Options ... 70
10.1.3. Using Groups .. 70

10.2. Clones - Resources That Should be Active on Multiple Hosts .. 71
10.2.1. Properties .. 71
10.2.2. Options ... 72
10.2.3. Using Clones ... 72

10.3. Multi-state - Resources That Have Multiple Modes ... 75
10.3.1. Properties .. 75
10.3.2. Options ... 75
10.3.3. Using Multi-state Resources ... 76

10.1. Groups - A Syntactic Shortcut
One of the most common elements of a cluster is a set of resources that need to be located together,
start sequentially and stop in the reverse order. To simplify this configuration we support the concept of
groups.

 <group id="shortcut">
 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>
 <primitive id="Email" class="lsb" type="exim"/>
 </group>

Example 10.1. An example group

Although the example above contains only two resources, there is no limit to the number of resources
a group can contain. The example is also sufficient to explain the fundamental properties of a group:

• Resources are started in the order they appear in (Public-IP first, then Email)

• Resources are stopped in the reverse order to which they appear in (Email first, then Public-IP)

• If a resource in the group can't run anywhere, then nothing after that is allowed to run

• If Public-IP can’t run anywhere, neither can Email

• If Email can’t run anywhere, this does not affect Public-IP in any way

The group above is logically equivalent to writing:

Chapter 10. Advanced Resource Types

70

 <configuration>
 <resources>
 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>
 <primitive id="Email" class="lsb" type="exim"/>
 </resources>
 <constraints>
 <rsc_colocation id="xxx" rsc="Email" with-rsc="Public-IP" score="INFINITY"/>
 <rsc_order id="yyy" first="Public-IP" then="Email"/>
 </constraints>
 </configuration>

Example 10.2. How the cluster sees a group resource

Obviously as the group grows bigger, the reduced configuration effort can become significant.

10.1.1. Properties

Field Description

id Your name for the group

Table 10.1. Properties of a Group Resource

10.1.2. Options
Options inherited from simple resources: priority, target-role, is-managed

10.1.3. Using Groups

10.1.3.1. Instance Attributes
Groups have no instance attributes, however any that are set here will be inherited by the group's
children.

10.1.3.2. Contents
Groups may only contain a collection of primitive cluster resources. To refer to the child of a group
resource, just use the child's id instead of the group's.

10.1.3.3. Constraints
Although it is possible to reference the group's children in constraints, it is usually preferable to use the
group's name instead.

 <constraints>
 <rsc_location id="group-prefers-node1" rsc="shortcut" node="node1" score="500"/>
 <rsc_colocation id="webserver-with-group" rsc="Webserver" with-rsc="shortcut"/>
 <rsc_order id="start-group-then-webserver" first="Webserver" then="shortcut"/>

Clones - Resources That Should be Active on Multiple Hosts

71

 </constraints>

Example 10.3. Example constraints involving groups

10.1.3.4. Stickiness
Stickiness, the measure of how much a resource wants to stay where it is, is additive in groups. Every
active member of the group will contribute its stickiness value to the group's total. So if the default
resource-stickiness is 100 a group has seven members, five of which are active, then the group
as a whole will prefer its current location with a score of 500.

10.2. Clones - Resources That Should be Active on Multiple
Hosts
Clones were initially conceived as a convenient way to start N instances of an IP resource and have
them distributed throughout the cluster for load balancing. They have turned out to quite useful for a
number of purposes including integrating with Red Hat's DLM, the fencing subsystem and OCFS2.

You can clone any resource provided the resource agent supports it.

Three types of cloned resources exist.

• Anonymous

• Globally Unique

• Stateful

Anonymous clones are the simplest type. These resources behave completely identically everywhere
they are running. Because of this, there can only be one copy of an anonymous clone active per
machine.

Globally unique clones are distinct entities. A copy of the clone running on one machine is not
equivalent to another instance on another node. Nor would any two copies on the same node be
equivalent.

Stateful clones are covered later in Section 10.3, “Multi-state - Resources That Have Multiple Modes”.

 <clone id="apache-clone">
 <meta_attributes id="apache-clone-meta">
 <nvpair id="apache-unique" name="globally-unique" value="false"/>
 </meta_attributes>
 <primitive id="apache" class="lsb" type="apache"/>
 </clone>

Example 10.4. An example clone

10.2.1. Properties

Field Description

id Your name for the clone

Table 10.2. Properties of a Clone Resource

Chapter 10. Advanced Resource Types

72

10.2.2. Options
Options inherited from simple resources: priority, target-role, is-managed

Field Description

clone-max How many copies of the resource to start.
Defaults to the number of nodes in the cluster.

clone-node-max How many copies of the resource can be started
on a single node. Defaults to 1.

notify When stopping or starting a copy of the clone,
tell all the other copies beforehand and when the
action was successful. Allowed values: true, false

globally-unique Does each copy of the clone perform a different
function? Allowed values: true, false

ordered Should the copies be started in series (instead of
in parallel). Allowed values: true, false

interleave Changes the behavior of ordering constraints
(between clones/masters) so that instances can
start/stop as soon as their peer instance has
(rather than waiting for every instance of the
other clone has). Allowed values: true, false

Table 10.3. Clone specific configuration options

10.2.3. Using Clones

10.2.3.1. Instance Attributes
Clones have no instance attributes, however any that are set here will be inherited by the clone's
children.

10.2.3.2. Contents
Clones must contain exactly one group or one regular resource.

Warning
You should never reference the name of a clone's child. If you think you need to do this,
you probably need to re-evaluate your design.

10.2.3.3. Constraints
In most cases, a clone will have a single copy on each active cluster node. However if this is not the
case, you can indicate which nodes the cluster should to preferentially assign copies to with resource
location constraints. These constraints are written no differently to those for regular resources except
that the clone's id is used.

Ordering constraints behave slightly differently for clones. In the example below, apache-stats will wait
until all copies of the clone that need to be started have done so before being started itself. Only if no

Using Clones

73

copies can be started will apache-stats be prevented from being active. Additionally, the clone will wait
for apache-stats to be stopped before stopping the clone.

Colocation of a regular (or group) resource with a clone means that the resource can run on any
machine with an active copy of the clone. The cluster will choose a copy based on where the clone is
running and the rsc resource's own location preferences.

Colocation between clones is also possible. In such cases, the set of allowed locations for the rsc
clone is limited to nodes on which the with clone is (or will be) active. Allocation is then performed as-
per-normal.

 <constraints>
 <rsc_location id="clone-prefers-node1" rsc="apache-clone" node="node1" score="500"/>
 <rsc_colocation id="stats-with-clone" rsc="apache-stats" with="apache-clone"/>
 <rsc_order id="start-clone-then-stats" first="apache-clone" then="apache-stats"/>
 </constraints>

Example 10.5. Example constraints involving clones

10.2.3.4. Stickiness
To achieve a stable allocation pattern, clones are slightly sticky by default. If no value for resource-
stickiness is provided, the clone will use a value of 1. Being a small value, it causes minimal
disturbance to the score calculations of other resources but is enough to prevent Pacemaker from
needlessly moving copies around the cluster.

10.2.3.5. Resource Agent Requirements
Any resource can be used as an anonymous clone as it requires no additional support from the
resource agent. Whether it makes sense to do so depends on your resource and its resource agent.

Globally unique clones do require some additional support in the resource agent. In particular, it must
only respond with ${OCF_SUCCESS} if the node has that exact instance active. All other probes for
instances of the clone should result in ${OCF_NOT_RUNNING}. Unless of course they are failed, in
which case they should return one of the other OCF error codes.

Copies of a clone are identified by appending a colon and a numerical offset. Eg. apache:2

Resource agents can find out how many copies there are by examining the
OCF_RESKEY_CRM_meta_clone_max environment variable and which copy it is by examining
OCF_RESKEY_CRM_meta_clone.

You should not make any assumptions (based on OCF_RESKEY_CRM_meta_clone) about which
copies are active. In particular, the list of active copies will not always be an unbroken sequence, nor
always start at 0.

10.2.3.6. Notifications
Supporting notifications requires the notify action to be implemented. Once supported, the notify
action will be passed a number of extra variables which, when combined with additional context, can
be used to calculate the current state of the cluster and what is about to happen to it.

Chapter 10. Advanced Resource Types

74

Variable Description

OCF_RESKEY_CRM_meta_notify_type Allowed values: pre, post

OCF_RESKEY_CRM_meta_notify_operation Allowed values: start, stop

OCF_RESKEY_CRM_meta_notify_start_resource Resources to be started

OCF_RESKEY_CRM_meta_notify_stop_resource Resources to be stopped

OCF_RESKEY_CRM_meta_notify_active_resourceResources the that are running

OCF_RESKEY_CRM_meta_notify_inactive_resourceResources the that are not running

OCF_RESKEY_CRM_meta_notify_start_uname Nodes on which resources will be started

OCF_RESKEY_CRM_meta_notify_stop_uname Nodes on which resources will be stopped

OCF_RESKEY_CRM_meta_notify_active_uname Nodes on which resources are running

OCF_RESKEY_CRM_meta_notify_inactive_unameNodes on which resources are not running

Table 10.4. Environment variables supplied with Clone notify actions

The variables come in pairs, such as OCF_RESKEY_CRM_meta_notify_start_resource and
OCF_RESKEY_CRM_meta_notify_start_uname and should be treated as an array of whitespace
separated elements.

Thus in order to indicate that clone:0 will be started on sles-1, clone:2 will be started on sles-3, and
clone:3 will be started on sles-2, the cluster would set

OCF_RESKEY_CRM_meta_notify_start_resource="clone:0 clone:2 clone:3"

OCF_RESKEY_CRM_meta_notify_start_uname="sles-1 sles-3 sles-2"

Example notification variables

10.2.3.7. Proper Interpretation of Notification Environment Variables
Pre-notification (stop)

• Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource

• Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (stop) / Pre-notification (start)

• Active resources:

$OCF_RESKEY_CRM_meta_notify_active_resource

minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Inactive resources:

$OCF_RESKEY_CRM_meta_notify_inactive_resource

Multi-state - Resources That Have Multiple Modes

75

plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (start)

• Active resources:

$OCF_RESKEY_CRM_meta_notify_active_resource

minus $OCF_RESKEY_CRM_meta_notify_stop_resource

plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Inactive resources:

$OCF_RESKEY_CRM_meta_notify_inactive_resource

plus $OCF_RESKEY_CRM_meta_notify_stop_resource

minus $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

10.3. Multi-state - Resources That Have Multiple Modes
Multi-state resources are a specialization of Clones (please ensure you understand the section on
clones before continuing) that allow the instances to be in one of two operating modes. These modes
are called Master and Slave but can mean whatever you wish them to mean. The only limitation is that
when an instance is started, it must come up in the Slave state.

10.3.1. Properties

Field Description

id Your name for the multi-state resource

Table 10.5. Properties of a Multi-State Resource

10.3.2. Options
Options inherited from simple resources: priority, target-role, is-managed

Options inherited from clone resources: clone-max, clone-node-max, notify, globally-
unique, ordered, interleave

Field Description

master-max How many copies of the resource can be
promoted to master status. Defaults to 1.

Chapter 10. Advanced Resource Types

76

Field Description

master-node-max How many copies of the resource can be
promoted to master status on a single node.
Defaults to 1.

Table 10.6. Multi-state specific resource configuration options

10.3.3. Using Multi-state Resources

10.3.3.1. Instance Attributes
Multi-state resources have no instance attributes, however any that are set here will be inherited by
the master's children.

10.3.3.2. Contents
Masters must contain exactly one group or one regular resource.

Warning
You should never reference the name of a master's child. If you think you need to do this,
you probably need to re-evaluate your design.

10.3.3.3. Monitoring Multi-State Resources
The normal type of monitor actions you define are not sufficient to monitor a multi-state resource in the
Master state. To detect failures of the master instance, you need to define an additional monitor action
with role="Master".

Important
It is crucial that every monitor operation has a different interval

 <master id="myMasterRsc">
 <primitive id="myRsc" class="ocf" type="myApp" provider="myCorp">
 <operations>
 <op id="public-ip-slave-check" name="monitor" interval="60"/>
 <op id="public-ip-master-check" name="monitor" interval="61" role="Master"/>
 </operations>
 </primitive>
 </master>

Example 10.6. Monitoring both states of a multi-state resource

10.3.3.4. Constraints
In most cases, a multi-state resources will have a single copy on each active cluster node. However
if this is not the case, you can indicate which nodes the cluster should to preferentially assign copies

Using Multi-state Resources

77

to with resource location constraints. These constraints are written no differently to those for regular
resources except that the master's id is used.

When considering multi-state resources in constraints, for most purposes it is sufficient to treat them
as clones. The exception is when the rsc-role and/or with-rsc-role (for colocation constraints)
and first-action and/or then-action (for ordering constraints) are used.

Field Description

rsc-role An additional attribute of colocation constraints
that specifies the role that rsc must be in.

Allowed values: Started, Master, Slave

with-rsc-role An additional attribute of colocation constraints
that specifies the role that with-rsc must be in.

Allowed values: Started, Master, Slave

first-action An additional attribute of ordering constraints that
specifies the action that the first resource must
complete before executing the specified action
for the then resource.

Allowed values: start, stop, promote, demote

then-action An additional attribute of ordering constraints
that specifies the action that the then resource
can only execute after the first-action on the first
resource has completed.

Allowed values: start, stop, promote, demote.
Defaults to the value (specified or implied) of
first-action

Table 10.7. Additional constraint options relevant to multi-state resources

In the example below, myApp will wait until one of database copies has been started and promoted to
master before being started itself. Only if no copies can be promoted will apache-stats be prevented
from being active. Additionally, the database will wait for myApp to be stopped before it is demoted.

Colocation of a regular (or group) resource with a multi-state resource means that it can run on
any machine with an active copy of the clone that is in the specified state (Master or Slave). In the
example, the cluster will choose a location based on where database is running as a Master, and
if there are multiple Master instances it will also factor in myApp‘s own location preferences when
deciding which location to choose.

Colocation with regular clones and other multi-state resources is also possible. In such cases, the set
of allowed locations for the rsc clone is (after role filtering) limited to nodes on which the with-rsc
clone is (or will be) in the specified role. Allocation is then performed as-per-normal.

 <constraints>
 <rsc_location id="db-prefers-node1" rsc="database" node="node1" score="500"/>
 <rsc_colocation id="backup-with-db-slave" rsc="backup" with-rsc="database" with-rsc-
role="Slave"/>
 <rsc_colocation id="myapp-with-db-master" rsc="myApp" with-rsc="database" with-rsc-
role="Master"/>

Chapter 10. Advanced Resource Types

78

 <rsc_order id="start-db-before-backup" first="database" then="backup"/>
 <rsc_order id="promote-db-then-app" first="database" first-action="promote" then="myApp"
 then-action="start"/>
 </constraints>

Example 10.7. Example constraints involving multi-state resources

10.3.3.5. Stickiness
To achieve a stable allocation pattern, clones are slightly sticky by default. If no value for resource-
stickiness is provided, the clone will use a value of 1. Being a small value, it causes minimal
disturbance to the score calculations of other resources but is enough to prevent Pacemaker from
needlessly moving copies around the cluster.

10.3.3.6. Which Resource Instance is Promoted
During the start operation, most Resource Agent scripts should call the crm_master utility. This tool
automatically detects both the resource and host and should be used to set a preference for being
promoted. Based on this, master-max, and master-node-max, the instance(s) with the highest
preference will be promoted.

The other alternative is to create a location constraint that indicates which nodes are most preferred as
masters.

 <rsc_location id="master-location" rsc="myMasterRsc">
 <rule id="master-rule" score="100" role="Master">
 <expression id="master-exp" attribute="#uname" operation="eq" value="node1"/>
 </rule>
 </rsc_location>

Example 10.8. Manually specifying which node should be promoted

10.3.3.7. Resource Agent Requirements
Since multi-state resources are an extension of cloned resources, all the requirements of Clones are
also requirements of multi-state resources. Additionally, multi-state resources require two extra actions
demote and promote. These actions are responsible for changing the state of the resource. Like start
and stop, they should return OCF_SUCCESS if they completed successfully or a relevant error code if
they did not.

The states can mean whatever you wish, but when the resource is started, it must come up in the
mode called Slave. From there the cluster will then decide which instances to promote into a Master.

In addition to the Clone requirements for monitor actions, agents must also accurately report which
state they are in. The cluster relies on the agent to report its status (including role) accurately and
does not indicate to the agent what role it currently believes it to be in.

Monitor Return Code Description

OCF_NOT_RUNNING Stopped

OCF_SUCCESS Running (Slave)

OCF_RUNNING_MASTER Running (Master)

Using Multi-state Resources

79

Monitor Return Code Description

OCF_FAILED_MASTER Failed (Master)

Other Failed (Slave)

Table 10.8. Role implications of OCF return codes

10.3.3.8. Notifications
Like with clones, supporting notifications requires the notify action to be implemented. Once
supported, the notify action will be passed a number of extra variables which, when combined with
additional context, can be used to calculate the current state of the cluster and what is about to
happen to it.

Variable Description

OCF_RESKEY_CRM_meta_notify_type Allowed values: pre, post

OCF_RESKEY_CRM_meta_notify_operation Allowed values: start, stop

OCF_RESKEY_CRM_meta_notify_active_resourceResources the that are running

OCF_RESKEY_CRM_meta_notify_inactive_resourceResources the that are not running

OCF_RESKEY_CRM_meta_notify_master_resourceResources that are running in Master mode

OCF_RESKEY_CRM_meta_notify_slave_resourceResources that are running in Slave mode

OCF_RESKEY_CRM_meta_notify_start_resource Resources to be started

OCF_RESKEY_CRM_meta_notify_stop_resource Resources to be stopped

OCF_RESKEY_CRM_meta_notify_promote_resourceResources to be promoted

OCF_RESKEY_CRM_meta_notify_demote_resourceResources to be demoted

OCF_RESKEY_CRM_meta_notify_start_uname Nodes on which resources will be started

OCF_RESKEY_CRM_meta_notify_stop_uname Nodes on which resources will be stopped

OCF_RESKEY_CRM_meta_notify_promote_unameNodes on which resources will be promoted

OCF_RESKEY_CRM_meta_notify_demote_unameNodes on which resources will be demoted

OCF_RESKEY_CRM_meta_notify_active_uname Nodes on which resources are running

OCF_RESKEY_CRM_meta_notify_inactive_unameNodes on which resources are not running

OCF_RESKEY_CRM_meta_notify_master_uname Nodes on which resources are running in Master
mode

OCF_RESKEY_CRM_meta_notify_slave_uname Nodes on which resources are running in Slave
mode

Variables in bold are specific to Master resources and all behave in the same manner as described for Clone resources.

Table 10.9. Environment variables supplied with Master notify actions 1

10.3.3.9. Proper Interpretation of Notification Environment Variables
Pre-notification (demote)

• Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource

• Master resources: $OCF_RESKEY_CRM_meta_notify_master_resource

• Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource

Chapter 10. Advanced Resource Types

80

• Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (demote) / Pre-notification (stop)

• Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource

• Master resources:

$OCF_RESKEY_CRM_meta_notify_master_resource

minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource

• Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

Post-notification (stop) / Pre-notification (start)

• Active resources:

$OCF_RESKEY_CRM_meta_notify_active_resource

minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Master resources:

$OCF_RESKEY_CRM_meta_notify_master_resource

minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• Slave resources:

$OCF_RESKEY_CRM_meta_notify_slave_resource

minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Inactive resources:

$OCF_RESKEY_CRM_meta_notify_inactive_resource

Using Multi-state Resources

81

plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (start) / Pre-notification (promote)

• Active resources:

$OCF_RESKEY_CRM_meta_notify_active_resource

minus $OCF_RESKEY_CRM_meta_notify_stop_resource

plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Master resources:

$OCF_RESKEY_CRM_meta_notify_master_resource

minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• Slave resources:

$OCF_RESKEY_CRM_meta_notify_slave_resource

minus $OCF_RESKEY_CRM_meta_notify_stop_resource

plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Inactive resources:

$OCF_RESKEY_CRM_meta_notify_inactive_resource

plus $OCF_RESKEY_CRM_meta_notify_stop_resource

minus $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Chapter 10. Advanced Resource Types

82

Post-notification (promote)

• Active resources:

$OCF_RESKEY_CRM_meta_notify_active_resource

minus $OCF_RESKEY_CRM_meta_notify_stop_resource

plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Master resources:

$OCF_RESKEY_CRM_meta_notify_master_resource

minus $OCF_RESKEY_CRM_meta_notify_demote_resource

plus $OCF_RESKEY_CRM_meta_notify_promote_resource

• Slave resources:

$OCF_RESKEY_CRM_meta_notify_slave_resource

minus $OCF_RESKEY_CRM_meta_notify_stop_resource

plus $OCF_RESKEY_CRM_meta_notify_start_resource

minus $OCF_RESKEY_CRM_meta_notify_promote_resource

• Inactive resources:

$OCF_RESKEY_CRM_meta_notify_inactive_resource

plus $OCF_RESKEY_CRM_meta_notify_stop_resource

minus $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Chapter 11.

83

Protecting Your Data - STONITH

Table of Contents
11.1. Why You Need STONITH .. 83
11.2. What STONITH Device Should You Use .. 83
11.3. Configuring STONITH ... 83

11.3.1. Example .. 84

11.1. Why You Need STONITH
STONITH1 is an acronym for Shoot-The-Other-Node-In-The-Head and it protects your data from being
corrupted by rouge nodes or concurrent access.

Just because a node is unresponsive, this doesn't mean it isn't accessing your data. The only way to
be 100% sure that your data is safe, is to use STONITH so we can be certain that the node is truly
offline, before allowing the data to be accessed from another node.

STONITH also has a role to play in the event that a clustered service cannot be stopped. In this case,
the cluster uses STONITH to force the whole node offline, thereby making it safe to start the service
elsewhere.

11.2. What STONITH Device Should You Use
It is crucial that the STONITH device can allow the cluster to differentiate between a node failure and a
network one.

The biggest mistake people make in choosing a STONITH device is to use remote power switch (such
as many on-board IMPI controllers) that shares power with the node it controls. In such cases, the
cluster cannot be sure if the node is really offline, or active and suffering from a network fault.

Likewise, any device that relies on the machine being active (such as SSH-based "devices" used
during testing) are inappropriate.

11.3. Configuring STONITH
1. Find the correct driver: stonith -L

2. Since every device is different, the parameters needed to configure it will vary. To find out the
parameters required by the device: stonith -t type -n

Hopefully the developers chose names that make sense, if not you can query for some additional
information by finding an active cluster node and running:

lrmadmin -M stonith type pacemaker

The output should be XML formatted text containing additional parameter descriptions

1 http://en.wikipedia.org/wiki/STONITH

http://en.wikipedia.org/wiki/STONITH
http://en.wikipedia.org/wiki/STONITH

Chapter 11. Protecting Your Data - STONITH

84

3. Create a file called stonith.xml containing a primitive resource with a class of stonith, a type of
type and a parameter for each of the values returned in step 2

4. Create a clone from the primitive resource if the device can shoot more than one node and
supports multiple simultaneous connections.

5. Upload it into the CIB using cibadmin: cibadmin -C -o resources --xml-file
stonith.xml

11.3.1. Example
Assuming we have an IBM BladeCenter consisting of four nodes and the management interface
is active on 10.0.0.1, then we would chose the external/ibmrsa driver in step 2 and obtain the
following list of parameters

 stonith -t external/ibmrsa -n
 hostname ipaddr userid passwd type

Figure 11.1. Obtaining a list of STONITH Parameters

from which we would create a STONITH resource fragment that might look like this

 <clone id="Fencing">
 <meta_attributes id="fencing">
 <nvpair id="Fencing-unique" name="globally-unique" value="false"/>
 </meta_attributes>
 <primitive id="rsa" class="stonith" type="external/ibmrsa">
 <operations>
 <op id="rsa-mon-1" name="monitor" interval="120s"/>
 </operations>
 <instance_attributes id="rsa-parameters">
 <nvpair id="rsa-attr-1" name="hostname" value="node1 node2 node3 node4"/>
 <nvpair id="rsa-attr-1" name="ipaddr" value="10.0.0.1"/>
 <nvpair id="rsa-attr-1" name="userid" value="testuser"/>
 <nvpair id="rsa-attr-1" name="passwd" value="abc123"/>
 <nvpair id="rsa-attr-1" name="type" value="ibm"/>
 </instance_attributes>
 </primitive>
 </clone>

Example 11.1. Sample STONITH Resource

Chapter 12.

85

Status - Here be dragons

Table of Contents
12.1. Node Status ... 85
12.2. Transient Node Attributes .. 86
12.3. Operation History ... 87

12.3.1. Simple Example ... 88
12.3.2. Complex Resource History Example ... 89

Most users never need understand the contents of the status section and can be content with the
output from crm_mon. However for those with a curious inclination, the following attempts to proved
an overview of its contents.

12.1. Node Status
In addition to the cluster's configuration, the CIB holds an up-to-date representation of each cluster
node in the status section.

 <node_state id="cl-virt-1" uname="cl-virt-2" ha="active" in_ccm="true" crmd="online"
 join="member" expected="member" crm-debug-origin="do_update_resource">
 <transient_attributes id="cl-virt-1"/>
 <lrm id="cl-virt-1"/>
 </node_state>

Figure 12.1. A bare-bones status entry for a healthy node called cl-virt-1

Users are highly recommended not to modify any part of a node's state directly. The cluster will
periodically regenerate the entire section from authoritative sources. So any changes should be with
the tools for those subsystems.

Dataset Authoritative Source

node_state fields crmd

transient_attributes tag attrd

lrm tag lrmd

Table 12.1. Authoritative Sources for State Information

The fields used in the node_state objects are named as they are largely for historical reasons
and are rooted in Pacemaker's origins as the Heartbeat resource manager. They have remained
unchanged to preserve compatibility with older versions.

Field Description

id Unique identifier for the node. Corosync
based clusters use the same value as uname,

Chapter 12. Status - Here be dragons

86

Field Description
Heartbeat cluster use a human-readable (but
annoying) UUID.

uname The node's machine name (output from uname -
n)

ha Is the cluster software active on the node.
Allowed values: active, dead

in_ccm Is the node part of the cluster's membership.
Allowed values: true, false

crmd Is the crmd process active on the node. Allowed
values: online, offline

join Is the node participating in hosting resources.
Allowed values: down, pending, member, banned

expected Expected value for join

crm-debug-origin Diagnostic indicator. The origin of the most
recent change(s).

Table 12.2. Node Status Fields

The cluster uses these fields to determine if, at the node level, the node is healthy or is in a failed state
and needs to be fenced.

12.2. Transient Node Attributes
Like regular node attributes, the name/value pairs listed here also help describe the node. However
they are forgotten by the cluster when the node goes offline. This can be useful, for instance, when
you only want a node to be in standby mode (not able to run resources) until the next reboot.

In addition to any values the administrator sets, the cluster will also store information about failed
resources here.

 <transient_attributes id="cl-virt-1">
 <instance_attributes id="status-cl-virt-1">
 <nvpair id="status-cl-virt-1-pingd" name="pingd" value="3"/>
 <nvpair id="status-cl-virt-1-probe_complete" name="probe_complete" value="true"/>
 <nvpair id="status-cl-virt-1-fail-count-pingd:0" name="fail-count-pingd:0" value="1"/>
 <nvpair id="status-cl-virt-1-last-failure-pingd:0" name="last-failure-pingd:0"
 value="1239009742"/>
 </instance_attributes>
 </transient_attributes>

Figure 12.2. Example set of transient node attributes for node "cl-virt-1"

In the above example, we can see that the pingd:0 resource has failed once, at Mon Apr 6
11:22:22 2009. 1 We also see that the node is connected to three "pingd" peers and that all known
resources have been checked for on this machine (probe_complete).

You can use the following Perl one-liner to print a human readable of any seconds-since-epoch value:

perl -e 'print scalar(localtime($seconds))."\n"'

Operation History

87

12.3. Operation History
A node's resource history is held in the lrm_resources tag (a child of the lrm tag). The information
stored here includes enough information for the cluster to stop the resource safely if it is removed
from the configuration section. Specifically we store the resource's id, class, type and
provider.

 <lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith">

Figure 12.3. A record of the apcstonith resource

Additionally, we store the last job for every combination of resource, action and interval. The
concatenation of the values in this tuple are used to create the id of the lrm_rsc_op object.

Field Description

id Identifier for the job constructed from the
resource id, operation and interval.

call-id The job's ticket number. Used as a sort key
to determine the order in which the jobs were
executed.

operation The action the resource agent was invoked with.

interval The frequency, in milliseconds, at which the
operation will be repeated. 0 indicates a one-off
job.

op-status The job's status. Generally this will be either 0
(done) or -1 (pending). Rarely used in favor of rc-
code.

rc-code The job's result. Refer to Section B.3, “How Does
the Cluster Interpret the OCF Return Codes?” for
details on what the values here mean and how
they are interpreted.

last-run Diagnostic indicator. Machine local date/time,
in seconds since epoch, at which the job was
executed.

last-rc-change Diagnostic indicator. Machine local date/time,
in seconds since epoch, at which the job first
returned the current value of rc-code

exec-time Diagnostic indicator. Time, in seconds, that the
job was running for

queue-time Diagnostic indicator. Time, in seconds, that the
job was queued for in the LRMd

crm_feature_set The version which this job description conforms
to. Used when processing op-digest

transition-key A concatenation of the job's graph action
number, the graph number, the expected
result and the UUID of the crmd instance that
scheduled it. This is used to construct transition-
magic (below).

Chapter 12. Status - Here be dragons

88

Field Description

transition-magic A concatenation of the job's op-status, rc-code
and transition-key. Guaranteed to be unique for
the life of the cluster (which ensures it is part of
CIB update notifications) and contains all the
information needed for the crmd to correctly
analyze and process the completed job. Most
importantly, the decomposed elements tell the
crmd if the job entry was expected and whether it
failed.

op-digest An MD5 sum representing the parameters
passed to the job. Used to detect changes to the
configuration and restart resources if necessary.

crm-debug-origin Diagnostic indicator. The origin of the current
values.

Table 12.3. Contents of an lrm_rsc_op job.

12.3.1. Simple Example

 <lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith">
 <lrm_rsc_op id="apcstonith_monitor_0" operation="monitor" call-id="2" rc-code="7" op-
status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 op-digest="2e3da9274d3550dc6526fb24bfcbcba0"
 transition-key="22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 transition-magic="0:7;22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-run="1239008085" last-rc-change="1239008085" exec-time="10" queue-time="0"/>
 </lrm_resource>

Figure 12.4. A monitor operation performed by the cluster to determine the current state of the
apcstonith resource

In the above example, the job is a non-recurring monitor often referred to as a "probe" for the
apcstonith resource. The cluster schedules probes for every configured resource on when a new node
starts, in order to determine the resource's current state before it takes further any further action.

From the transition-key, we can see that this was the 22nd action of the 2nd graph produced
by this instance of the crmd (2668bbeb-06d5-40f9-936d-24cb7f87006a). The third field of the
transition-key contains a 7, this indicates that the job expects to find the resource inactive. By
now looking at the rc-code property, we see that this was the case.

Evidently, the cluster started the resource elsewhere as that is the only job recorded for this node.

Complex Resource History Example

89

12.3.2. Complex Resource History Example

 <lrm_resource id="pingd:0" type="pingd" class="ocf" provider="pacemaker">
 <lrm_rsc_op id="pingd:0_monitor_30000" operation="monitor" call-id="34" rc-code="0" op-
status="0" interval="30000"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 op-digest="a0f8398dac7ced82320fe99fd20fbd2f"
 transition-key="10:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 transition-magic="0:0;10:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/>
 <lrm_rsc_op id="pingd:0_stop_0" operation="stop"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" call-id="32" rc-code="0" op-
status="0" interval="0"
 op-digest="313aee7c6aad26e290b9084427bbab60"
 transition-key="11:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 transition-magic="0:0;11:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/>
 <lrm_rsc_op id="pingd:0_start_0" operation="start" call-id="33" rc-code="0" op-status="0"
 interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 op-digest="313aee7c6aad26e290b9084427bbab60"
 transition-key="31:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 transition-magic="0:0;31:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0" />
 <lrm_rsc_op id="pingd:0_monitor_0" operation="monitor" call-id="3" rc-code="0" op-
status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 op-digest="313aee7c6aad26e290b9084427bbab60"
 transition-key="23:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 transition-magic="0:0;23:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-run="1239008085" last-rc-change="1239008085" exec-time="20" queue-time="0"/>
 </lrm_resource>

Figure 12.5. Resource history of a pingd clone with multiple jobs

When more than one job record exists, it is important to first sort them by call-id before interpret
them. Once sorted, the above example can be summarized as:

1. A non-recurring monitor operation returning 7 (not running), with a call-id of 3

2. A stop operation returning 0 (success), with a call-id of 32

3. A start operation returning 0 (success), with a call-id of 33

4. A recurring monitor returning 0 (success), with a call-id of 34

The cluster processes each job record to build up a picture of the resource's state. After the first and
second entries, it is considered stopped and after the third it considered active. Based on the last
operation, we can tell that the resource is currently active.

Additionally, from the presence of a stop operation with a lower call-id than that of the
start operation, we can conclude that the resource has been restarted. Specifically this
occurred as part of actions 11 and 31 of transition 11 from the crmd instance with the key
2668bbeb-06d5-40f9-936d-24cb7f87006a. This information can be helpful for locating the
relevant section of the logs when looking for the source of a failure.

90

91

Appendix A. FAQ
A.1. History

Q: Why is the Project Called Pacemaker?

A: First of all, the reason its not called the CRM is because of the abundance of terms1 that are
commonly abbreviated to those three letters.

The Pacemaker name came from Kham2, a good friend of mine, and was originally used by
a Java GUI that I was prototyping in early 2007. Alas other commitments have prevented the
GUI from progressing much and, when it came time to choose a name for this project, Lars
suggested it was an even better fit for an independent CRM.

The idea stems from the analogy between the role of this software and that of the little device
that keeps the human heart pumping. Pacemaker monitors the cluster and intervenes when
necessary to ensure the smooth operation of the services it provides.

There were a number of other names (and acronyms) tossed around, but suffice to say
"Pacemaker" was the best

Q: Why was the Pacemaker Project Created?

A: The decision was made to spin-off the CRM into its own project after the 2.1.3 Heartbeat release
in order to

• support both the Corosync and Heartbeat cluster stacks equally

• decouple the release cycles of two projects at very different stages of their life-cycles

• foster the clearer package boundaries, thus leading to

• better and more stable interfaces

A.2. Setup

Q: What Messaging Layers are Supported?

A: • Corosync (http://www.corosync.org/)

• Heartbeat (http://linux-ha.org/)

Q: Can I Choose which Messaging Layer to use at Run Time?

A: Yes. The CRM will automatically detect who started it and behave accordingly.

Q: Can I Have a Mixed Heartbeat-Corosync Cluster?

A: No.

Q: Which Messaging Layer Should I Choose?

http://en.wikipedia.org/wiki/CRM
http://khamsouk.souvanlasy.com/
http://www.corosync.org/
http://linux-ha.org/

Appendix A. FAQ

92

A: This is discussed in Appendix D, Installation.

Q: Where Can I Get Pre-built Packages?

A: Official packages for most major .rpm and based distributions are available from:

http://www.clusterlabs.org/rpm

For Debian packages, building from source and details on using the above repositories, see our
installation page3.

Q: What Versions of Pacemaker Are Supported?

A: Please refer to the Releases4 page for an up-to-date list of versions supported directly by the
project.

When seeking assistance, please try to ensure you have one of these versions.

http://www.clusterlabs.org/rpm
https://clusterlabs.org/wiki/Install
https://clusterlabs.org/wiki/Releases

93

Appendix B. More About OCF Resource
Agents

Table of Contents
B.1. Location of Custom Scripts ... 93
B.2. Actions .. 93
B.3. How Does the Cluster Interpret the OCF Return Codes? .. 94

B.3.1. Exceptions .. 96

B.1. Location of Custom Scripts
OCF Resource Agents are found in /usr/lib/ocf/resource.d/provider.

When creating your own agents, you are encouraged to create a new directory under /usr/lib/
ocf/resource.d/ so that they are not confused with (or overwritten by) the agents shipped with
Heartbeat. So, for example, if you chose the provider name of bigCorp and wanted a new resource
named bigApp, you would create a script called /usr/lib/ocf/resource.d/bigCorp/bigApp
and define a resource:

<primitive id="custom-app" class="ocf" provider="bigCorp" type="bigApp"/>

B.2. Actions
All OCF Resource Agents are required to implement the following actions

Action Description Instructions

start Start the resource Return 0 on success and
an appropriate error code
otherwise. Must not report
success until the resource is
fully active.

stop Stop the resource Return 0 on success and
an appropriate error code
otherwise. Must not report
success until the resource is
fully stopped.

monitor Check the resource's state Exit 0 if the resource is running,
7 if it is stopped and anything
else if it is failed.

NOTE: The monitor script
should test the state of the
resource on the local machine
only.

Appendix B. More About OCF Resource Agents

94

Action Description Instructions

meta-data Describe the resource Provide information about this
resource as an XML snippet.
Exit with 0.

NOTE: This is not performed as
root.

validate-all Verify the supplied parameters
are correct

Exit with 0 if parameters are
valid, 2 if not valid, 6 if resource
is not configured.

Table B.1. Required Actions for OCF Agents

Additional requirements (not part of the OCF specs) are placed on agents that will be used for
advanced concepts like clones and multi-state resources.

Action Description Instructions

promote Promote the local instance of
a multi-state resource to the
master/primary state

Return 0 on success

demote Demote the local instance of
a multi-state resource to the
slave/secondary state

Return 0 on success

notify Used by the cluster to send the
agent pre and post notification
events telling the resource what
is or did just take place

Must not fail. Must exit 0

Table B.2. Optional Actions for OCF Agents

Some actions specified in the OCF specs are not currently used by the cluster

• reload - reload the configuration of the resource instance without disrupting the service

• recover - a variant of the start action, this should try to recover a resource locally.

Remember to use ocf-tester to verify that your new agent complies with the OCF standard properly.

B.3. How Does the Cluster Interpret the OCF Return
Codes?
The first thing the cluster does is check the return code against the expected result. If the result does
not match the expected value, then the operation is considered to have failed and recovery action is
initiated.

There are three types of failure recovery:

Recovery Type Description Action Taken by the Cluster

soft A transient error occurred Restart the resource or move it
to a new location

How Does the Cluster Interpret the OCF Return Codes?

95

Recovery Type Description Action Taken by the Cluster

hard A non-transient error that may
be specific to the current node
occurred

Move the resource elsewhere
and prevent it from being
retried on the current node

fatal A non-transient error that will
be common to all cluster nodes
(I.e. a bad configuration was
specified)

Stop the resource and prevent
it from being started on any
cluster node

Table B.3. Types of recovery performed by the cluster

Assuming an action is considered to have failed, the following table outlines the different OCF return
codes and the type of recovery the cluster will initiate when it is received.

OCF Return Code OCF Alias Description Recovery Type

0 OCF_SUCCESS Success. The
command complete
successfully. This is
the expected result
for all start, stop,
promote and demote
commands.

soft

1 OCF_ERR_GENERIC Generic "there was a
problem" error code.

soft

2 OCF_ERR_ARGS The resource's
configuration is not
valid on this machine.
Eg. Refers to a
location/tool not found
on the node.

hard

3 OCF_ERR_UNIMPLEMENTEDThe requested action is
not implemented.

hard

4 OCF_ERR_PERM The resource agent
does not have sufficient
privileges to complete
the task.

hard

5 OCF_ERR_INSTALLED The tools required
by the resource are
not installed on this
machine.

hard

6 OCF_ERR_CONFIGUREDThe resource's
configuration is
invalid. Eg. A required
parameters are
missing.

fatal

7 OCF_NOT_RUNNING The resource is safely
stopped. The cluster
will not attempt to stop

N/A

Appendix B. More About OCF Resource Agents

96

OCF Return Code OCF Alias Description Recovery Type
a resource that returns
this for any action.

8 OCF_RUNNING_MASTERThe resource is running
in Master mode.

soft

9 OCF_FAILED_MASTER The resource is in
Master mode but has
failed. The resource will
be demoted, stopped
and then started (and
possibly promoted)
again.

soft

other NA Custom error code. soft

Table B.4. OCF Return Codes and How They are Handled

Although counter intuitive, even actions that return 0 (aka. OCF_SUCCESS) can be considered to have
failed. This can happen when a resource that is expected to be in the Master state is found running as
a Slave, or when a resource is found active on multiple machines..

B.3.1. Exceptions
• Non-recurring monitor actions (probes) that find a resource active (or in Master mode) will not result

in recovery action unless it is also found active elsewhere

• The recovery action taken when a resource is found active more than once is determined by the
multiple-active property of the resource

• Recurring actions that return OCF_ERR_UNIMPLEMENTED do not cause any type of recovery

97

Appendix C. What Changed in 1.0

Table of Contents
C.1. New .. 97
C.2. Changed ... 97
C.3. Removed ... 98

C.1. New
• Failure timeouts. See Section 9.3.2, “Moving Resources Due to Failure”

• New section for resource and operation defaults. See Section 5.5, “Setting Global Defaults for
Resource Options” and Section 5.8, “Setting Global Defaults for Operations”

• Tool for making offline configuration changes. See Section 2.6, “Making Configuration Changes in a
Sandbox”

• Rules, instance_attributes, meta_attributes and sets of operations can be defined
once and referenced in multiple places. See Section 9.4, “Reusing Rules, Options and Sets of
Operations”

• The CIB now accepts XPath-based create/modify/delete operations. See the cibadmin help text.

• Multi-dimensional colocation and ordering constraints. See Section 6.5, “Ordering Sets of
Resources” and Section 6.6, “Collocating Sets of Resources”

• The ability to connect to the CIB from non-cluster machines. See Section 9.1, “Connecting to the
Cluster Configuration from a Remote Machine”

• Allow recurring actions to be triggered at known times. See Section 9.2, “Specifying When Recurring
Actions are Performed”

C.2. Changed
• Syntax

• All resource and cluster options now use dashes (-) instead of underscores (_)

• master_slave was renamed to master

• The attributes container tag was removed

• The operation field pre-req has been renamed requires

• All operations must have an interval, start/stop must have it set to zero

• The stonith-enabled option now defaults to true.

• The cluster will refuse to start resources if stonith-enabled is true (or unset) and no STONITH
resources have been defined

Appendix C. What Changed in 1.0

98

• The attributes of colocation and ordering constraints were renamed for clarity. See Section 6.3,
“Specifying the Order Resources Should Start/Stop In” and Section 6.4, “Placing Resources
Relative to other Resources”

• resource-failure-stickiness has been replaced by migration-threshold. See
Section 9.3.2, “Moving Resources Due to Failure”

• The arguments for command-line tools has been made consistent

• Switched to RelaxNG schema validation and libxml2 parser.

• id fields are now XML IDs which have the following limitations

• id's cannot contain colons (:)

• id's cannot begin with a number

• id's must be globally unique (not just unique for that tag)

• Some fields (such as those in constraints that refer to resources) are IDREFs. This means
that they must reference existing resources or objects in order for the configuration to be valid.
Removing an object which is referenced elsewhere will therefor fail.

• The CIB representation from which the MD5 digest used to verify CIBs has changed. This means
that every CIB update will require a full refresh on any upgraded nodes until the cluster is fully
upgraded to 1.0. This will result in significant performance degradation and it is therefor highly
inadvisable to run a mixed 1.0/0.6 cluster for any longer than absolutely necessary.

• Ping node information no longer needs to be added to ha.cf Simply include the lists of hosts in
your ping resource(s).

C.3. Removed
• Syntax

• It is no longer possible to set resource meta options as top-level attributes. Use meta attributes
instead.

• Resource and operation defaults are no longer read from crm_config. See Section 5.5, “Setting
Global Defaults for Resource Options” and Section 5.8, “Setting Global Defaults for Operations”
instead.

99

Appendix D. Installation

Table of Contents
D.1. Choosing a Cluster Stack ... 99
D.2. Enabling Pacemaker .. 99

D.2.1. For Corosync .. 99
D.2.2. For Heartbeat .. 101

D.1. Choosing a Cluster Stack
Ultimately the choice of cluster stack is a personal decision that must be made in the context of you
or your company's needs and strategic direction. Pacemaker currently functions equally well with both
stacks.

Here are some factors that may influence the decision

• SUSE/Novell, Red Hat and Oracle are all putting their collective weight behind the Corosync cluster
stack.

• Corosync is an OSI Certified implementation of an industry standard (the Service Availability Forum
Application Interface Specification).

• Using Corosync gives your applications access to the following additional cluster services

• checkpoint service

• distributed locking service

• extended virtual synchrony service

• cluster closed process group service

• It is likely that Pacemaker, at some point in the future, will make use of some of these additional
services not provided by Heartbeat

• To date, Pacemaker has received less real-world testing on Corosync than it has on Heartbeat.

D.2. Enabling Pacemaker

D.2.1. For Corosync
The Corosync configuration is normally located in /etc/corosync/corosync.conf and an
example for a machine with an address of 1.2.3.4 in a cluster communicating on port 1234 (without
peer authentication and message encryption) is shown below.

 totem {
 version: 2
 secauth: off
 threads: 0

Appendix D. Installation

100

 interface {
 ringnumber: 0
 bindnetaddr: 1.2.3.4
 mcastaddr: 226.94.1.1
 mcastport: 1234
 }
 }
 logging {
 fileline: off
 to_syslog: yes
 syslog_facility: daemon
 }
 amf {
 mode: disabled
 }

Example D.1. An example Corosync configuration file

The logging should be mostly obvious and the amf section refers to the Availability Management
Framework and is not covered in this document.

The interesting part of the configuration is the totem section. This is where we define the how the
node can communicate with the rest of the cluster and what protocol version and options (including
encryption1) it should use. Beginners are encouraged to use the values shown and modify the
interface section based on their network.

It is also possible to configure Corosync for an IPv6 based environment. Simply configure bindnetaddr
and mcastaddr with their IPv6 equivalents. Eg

 bindnetaddr: fec0::1:a800:4ff:fe00:20
 mcastaddr: ff05::1

Example D.2. Example options for an IPv6 environment

To tell Corosync to use the Pacemaker cluster manager, add the following fragment to a functional
Corosync configuration and restart the cluster.

 aisexec {
 user: root
 group: root
 }
 service {
 name: pacemaker
 ver: 0
 }

Example D.3. Configuration fragment for enabling Pacemaker under Corosync

The cluster needs to be run as root so that its child processes (the lrmd in particular) have sufficient
privileges to perform the actions requested of it. After-all, a cluster manager that can't add an IP
address or start apache is of little use.

The second directive is the one that actually instructs the cluster to run Pacemaker.

Please consult the Corosync website [http://www.corosync.org/] and documentation for details on enabling encryption and peer
authentication for the cluster.

http://www.corosync.org/
http://www.corosync.org/

For Heartbeat

101

D.2.2. For Heartbeat
Add the following to a functional ha.cf configuration file and restart Heartbeat

 crm respawn

Example D.4. Configuration fragment for enabling Pacemaker under Heartbeat

102

103

Appendix E. Upgrading Cluster
Software

Table of Contents
E.1. Version Compatibility .. 103
E.2. Complete Cluster Shutdown ... 104

E.2.1. Procedure ... 104
E.3. Rolling (node by node) ... 104

E.3.1. Procedure ... 104
E.3.2. Version Compatibility ... 105
E.3.3. Crossing Compatibility Boundaries ... 105

E.4. Disconnect and Reattach .. 105
E.4.1. Procedure ... 105
E.4.2. Notes .. 106

E.1. Version Compatibility
When releasing newer versions we take care to make sure we are backwardly compatible with
older versions. While you will always be able to upgrade from version x to x+1, in order to continue
to produce high quality software it may occasionally be necessary to drop compatibility with older
versions.

There will always be an upgrade path from any series-2 release to any other series-2 release.

There are three approaches to upgrading your cluster software

• Complete Cluster Shutdown

• Rolling (node by node)

• Disconnect and Reattach

Each method has advantages and disadvantages, some of which are listed in the table below, and you
should chose the one most appropriate to your needs.

Type Available
between all
software
versions

Service
Outage During
Upgrade

Service
Recovery
During
Upgrade

Exercises
Failover Logic/
Configuration

Allows change
of cluster
stack type 1

Shutdown yes always N/A no yes

Rolling no always yes yes no

Reattach yes only due to
failure

no no yes

For example, switching from Heartbeat to Corosync. Consult the Heartbeat or Corosync documentation to see if upgrading them
to a newer version is also supported

Table E.1. Summary of Upgrade Methodologies

Appendix E. Upgrading Cluster Software

104

E.2. Complete Cluster Shutdown
In this scenario one shuts down all cluster nodes and resources and upgrades all the nodes before
restarting the cluster.

E.2.1. Procedure
1. On each node:

a. Shutdown the cluster stack (Heartbeat or Corosync)

b. Upgrade the Pacemaker software. This may also include upgrading the cluster stack and/or
the underlying operating system..

2. Check the configuration manually or with the crm_verify tool if available.

3. On each node:

a. Start the cluster stack. This can be either Corosync or Heartbeat and does not need to be the
same as the previous cluster stack.

E.3. Rolling (node by node)
In this scenario each node is removed from the cluster, upgraded and then brought back online until all
nodes are running the newest version.

Important
This method is currently broken between Pacemaker 0.6.x and 1.0.x

Measures have been put into place to ensure rolling upgrades always work for versions
after 1.0.0 If there is sufficient demand, the work to repair 0.6 -> 1.0 compatibility will be
carried out. Otherwise, please try one of the other upgrade strategies. Detach/Reattach is
a particularly good option for most people.

E.3.1. Procedure
On each node:

1. Shutdown the cluster stack (Heartbeat or Corosync)

2. Upgrade the Pacemaker software. This may also include upgrading the cluster stack and/or the
underlying operating system.

a. On the first node, check the configuration manually or with the crm_verify tool if available.

3. Start the cluster stack. This must be the same type of cluster stack (Corosync or Heartbeat) that
the rest of the cluster is using. Upgrading Corosync/Heartbeat may also be possible, please
consult the documentation for those projects to see if the two versions will be compatible.

Repeat for each node in the cluster

Version Compatibility

105

E.3.2. Version Compatibility

Version being Installed Oldest Compatible Version

Pacemaker 1.0.x Pacemaker 1.0.0

Pacemaker 0.7.x Pacemaker 0.6 or Heartbeat 2.1.3

Pacemaker 0.6.x Heartbeat 2.0.8

Heartbeat 2.1.3 (or less) Heartbeat 2.0.4

Heartbeat 2.0.4 (or less) Heartbeat 2.0.0

Heartbeat 2.0.0 None. Use an alternate upgrade strategy.

Table E.2. Version Compatibility Table

E.3.3. Crossing Compatibility Boundaries
Rolling upgrades that cross compatibility boundaries must be preformed in multiple steps. For
example, to perform a rolling update from Heartbeat 2.0.1 to Pacemaker 0.6.6 one must:

1. Perform a rolling upgrade from Heartbeat 2.0.1 to Heartbeat 2.0.4

2. Perform a rolling upgrade from Heartbeat 2.0.4 to Heartbeat 2.1.3

3. Perform a rolling upgrade from Heartbeat 2.1.3 to Pacemaker 0.6.6

E.4. Disconnect and Reattach
A variant of a complete cluster shutdown, but the resources are left active and re-detected when the
cluster is restarted.

E.4.1. Procedure
1. Tell the cluster to stop managing services. This is required to allow the services to remain active

after the cluster shuts down.

crm_attribute -t crm_config -n is-managed-default -v false

2. For any resource that has a value for is-managed, make sure it is set to false (so that the cluster
will not stop it)

crm_resource -t primitive -r <rsc_id> -p is-managed -v false

3. On each node:

a. Shutdown the cluster stack (Heartbeat or Corosync)

b. Upgrade the cluster stack program - This may also include upgrading the underlying operating
system.

4. Check the configuration manually or with the crm_verify tool if available.

5. On each node:

a. Start the cluster stack. This can be either Corosync or Heartbeat and does not need to be the
same as the previous cluster stack.

Appendix E. Upgrading Cluster Software

106

6. Verify the cluster re-detected all resources correctly

7. Allow the cluster to resume managing resources again

crm_attribute -t crm_config -n is-managed-default -v true

8. For any resource that has a value for is-managed reset it to true (so the cluster can recover the
service if it fails) if desired

crm_resource -t primitive -r <rsc_id> -p is-managed -v false

E.4.2. Notes

Important
Always check your existing configuration is still compatible with the version you are
installing before starting the cluster.

Note
The oldest version of the CRM to support this upgrade type was in Heartbeat 2.0.4

107

Appendix F. Upgrading the
Configuration from 0.6

Table of Contents
F.1. Preparation ... 107
F.2. Perform the upgrade ... 107

F.2.1. Upgrade the software ... 107
F.2.2. Upgrade the Configuration .. 107
F.2.3. Manually Upgrading the Configuration ... 108

F.1. Preparation
Download the latest DTD from http://hg.clusterlabs.org/pacemaker/stable-1.0/file-raw/tip/xml/crm.dtd
and ensure your configuration validates.

F.2. Perform the upgrade

F.2.1. Upgrade the software
Refer to the appendix: Appendix E, Upgrading Cluster Software

F.2.2. Upgrade the Configuration
As XML is not the friendliest of languages, it is common for cluster administrators to have scripted
some of their activities. In such cases, it is likely that those scripts will not work with the new 1.0
syntax.

In order to support such environments, it is actually possible to continue using the old 0.6 syntax.

The downside however, is that not all the new features will be available and there is a performance
impact since the cluster must do a non-persistent configuration upgrade before each transition. So
while using the old syntax is possible, it is not advisable to continue using it indefinitely.

Even if you wish to continue using the old syntax, it is advisable to follow the upgrade procedure to
ensure that the cluster is able to use your existing configuration (since it will perform much the same
task internally).

1. Create a shadow copy to work with

crm_shadow --create upgrade06

2. Verify the configuration is valid

crm_verify --live-check

3. Fix any errors or warnings

4. Perform the upgrade

http://hg.clusterlabs.org/pacemaker/stable-1.0/file-raw/tip/xml/crm.dtd

Appendix F. Upgrading the Configuration from 0.6

108

cibadmin --upgrade

If this step fails, there are three main possibilities

a. The configuration was not valid to start with - go back to step 2

b. The transformation failed - report a bug or email the project at
pacemaker@oss.clusterlabs.org1

c. The transformation was successful but produced an invalid result 2

If the result of the transformation is invalid, you may see a number of errors from the validation
library. If these are not helpful, visit http://clusterlabs.org/wiki/Validation_FAQ and/or try the
following procedure described below under Section F.2.3, “Manually Upgrading the Configuration”.

5. Check the changes

crm_shadow --diff

If at this point there is anything about the upgrade that you wish to fine-tune (for example, to
change some of the automatic IDs) now is the time to do so. Since the shadow configuration is not
in use by the cluster, it is safe to edit the file manually:

crm_shadow --edit

Will open the configuration in your favorite editor (or whichever one is specified by the standard
EDITOR environment variable).

6. Preview how the cluster will react

Test what the cluster will do when you upload the new configuration

ptest -VVVVV --live-check --save-dotfile upgrade06.dot

graphviz upgrade06.dot

Verify that either no resource actions will occur or that you are happy with any that are
scheduled. If the output contains actions you do not expect (possibly due to changes to the score
calculations), you may need to make further manual changes. See Section 2.7, “Testing Your
Configuration Changes” for further details on how to interpret the output of ptest.

7. Upload the changes

crm_shadow --commit upgrade06 --force

If this step fails, something really strange has occurred. You should report a bug.

F.2.3. Manually Upgrading the Configuration
It is also possible to perform the configuration upgrade steps manually. To do this

1. Locate the upgrade06.xsl conversion script or download the latest version from version control3

2. xsltproc /path/tp/upgrade06.xsl config06.xml > config10.xml

3. Locate the pacemaker.rng script.

mailto:pacemaker@oss.clusterlabs.org?subject=Transformation%20failed%20during%20upgrade
https://clusterlabs.org/wiki/Validation_FAQ
http://hg.clusterlabs.org/pacemaker/stable-1.0/raw-file/tip/xml/upgrade06.xsl

Manually Upgrading the Configuration

109

4. xmllint --relaxng /path/tp/pacemaker.rng config10.xml

The advantage of this method is that it can be performed without the cluster running and any validation
errors should be more informative (despite being generated by the same library!) since they include
line numbers.

110

111

Appendix G. Is This init Script LSB
Compatible?
The relevant part of LSB spec can be found at: http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-
generic/LSB-Core-generic/iniscrptact.html. It includes a description of all the return codes listed here.

Assuming some_service is configured correctly and currently not active, the following sequence will
help you determine if it is LSB compatible:

1. Start (stopped):

/etc/init.d/some_service start ; echo "result: $?"

a. Did the service start?

b. Did the command print result: 0 (in addition to the regular output)?

2. Status (running):

/etc/init.d/some_service status ; echo "result: $?"

a. Did the script accept the command?

b. Did the script indicate the service was running?

c. Did the command print result: 0 (in addition to the regular output)?

3. Start (running):

/etc/init.d/some_service start ; echo "result: $?"

a. Is the service still running?

b. Did the command print result: 0 (in addition to the regular output)?

4. Stop (running):

/etc/init.d/some_service stop ; echo "result: $?"

a. Was the service stopped?

b. Did the command print result: 0 (in addition to the regular output)?

5. Status (stopped):

/etc/init.d/some_service status ; echo "result: $?"

a. Did the script accept the command?

b. Did the script indicate the service was not running?

c. Did the command print result: 3 (in addition to the regular output)?

6. Stop (stopped):

http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

Appendix G. Is This init Script LSB Compatible?

112

/etc/init.d/some_service stop ; echo "result: $?"

a. Is the service still stopped?

b. Did the command print result: 0 (in addition to the regular output)?

7. Status (failed):

This step is not readily testable and relies on manual inspection of the script.

The script can use one of the error codes (other than 3) listed in the LSB spec to indicate that it is
active but failed.

This tells the cluster that before moving the resource to another node, it needs to stop it on the
existing one first.

The script can use one of the error codes (other than 3) listed in the LSB spec to indicate that it is
active but failed. This tells the cluster that before moving the resource to another node, it needs to stop
it on the existing one first.

If the answer to any of the above questions is no, then the script is not LSB compliant. Your options
are then to either fix the script or write an OCF agent based on the existing script.

113

Appendix H. Sample Configurations

Table of Contents
H.1. An Empty Configuration ... 113
H.2. A Simple Configuration ... 113
H.3. An Advanced Configuration .. 114

H.1. An Empty Configuration

 <cib admin_epoch="0" epoch="0" num_updates="0" have-quorum="false">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
 </cib>

Example H.1. An empty configuration

H.2. A Simple Configuration

 <cib admin_epoch="0" epoch="1" num_updates="0" have-quorum="false" validate-
with="pacemaker-1.0">
 <configuration>
 <crm_config>
 <nvpair id="option-1" name="symmetric-cluster" value="true"/>
 <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
 </crm_config>
 <op_defaults>
 <nvpair id="op-default-1" name="timeout" value="30s"/>
 </op_defaults>
 <rsc_defaults>
 <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
 <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
 </rsc_defaults>
 <nodes>
 <node id="xxx" uname="c001n01" type="normal"/>
 <node id="yyy" uname="c001n02" type="normal"/>
 </nodes>
 <resources>
 <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
 <operations>
 <op id="myAddr-monitor" name="monitor" interval="300s"/>
 </operations>
 <instance_attributes>
 <nvpair name="ip" value="10.0.200.30"/>
 </instance_attributes>

Appendix H. Sample Configurations

114

 </primitive>
 </resources>
 <constraints>
 <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01" score="INFINITY"/>
 </constraints>
 </configuration>
 <status/>
 </cib>

Example H.2. 2 nodes, some cluster options and a resource

In this example, we have one resource (an IP address) that we check every five minutes and will run
on host c001n01 until either the resource fails 10 times or the host shuts down.

H.3. An Advanced Configuration

 <cib admin_epoch="0" epoch="1" num_updates="0" have-quorum="false" validate-
with="pacemaker-1.0">
 <configuration>
 <crm_config>
 <nvpair id="option-1" name="symmetric-cluster" value="true"/>
 <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
 <nvpair id="option-3" name="stonith-enabled" value="true"/>
 </crm_config>
 <op_defaults>
 <nvpair id="op-default-1" name="timeout" value="30s"/>
 </op_defaults>
 <rsc_defaults>
 <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
 <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
 </rsc_defaults>
 <nodes>
 <node id="xxx" uname="c001n01" type="normal"/>
 <node id="yyy" uname="c001n02" type="normal"/>
 <node id="zzz" uname="c001n03" type="normal"/>
 </nodes>
 <resources>
 <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
 <operations>
 <op id="myAddr-monitor" name="monitor" interval="300s"/>
 </operations>
 <instance_attributes>
 <nvpair name="ip" value="10.0.200.30"/>
 </instance_attributes>
 </primitive>
 <group id="myGroup">
 <primitive id="database" class="lsb" type="oracle">
 <operations>
 <op id="database-monitor" name="monitor" interval="300s"/>
 </operations>
 </primitive>
 <primitive id="webserver" class="lsb" type="apache">
 <operations>
 <op id="webserver-monitor" name="monitor" interval="300s"/>
 </operations>
 </primitive>
 </group>
 <clone id="STONITH">
 <meta_attributes id="stonith-options">

An Advanced Configuration

115

 <nvpair id="stonith-option-1" name="globally-unique" value="false"/>
 </meta_attributes>
 <primitive id="stonithclone" class="stonith" type="external/ssh">
 <operations>
 <op id="stonith-op-mon" name="monitor" interval="5s"/>
 </operations>
 <instance_attributes id="stonith-attrs">
 <nvpair id="stonith-attr-1" name="hostlist" value="c001n01,c001n02"/>
 </instance_attributes>
 </primitive>
 </clone>
 </resources>
 <constraints>
 <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01" score="INFINITY"/>
 <rsc_colocation id="group-with-ip" rsc="myGroup" with-rsc="myAddr" score="INFINITY"/>
 </constraints>
 </configuration>
 <status/>
 </cib>

Example H.3. groups and clones with stonith

116

117

Appendix I. Further Reading
• Project Website: http://www.clusterlabs.org/ and Documentation http://www.clusterlabs.org/wiki/

Documentation

• Cluster Commands

A comprehensive guide to cluster commands has been written by Novell and can be found at:
http://www.novell.com/documentation/sles11/book_sleha/index.html?page=/documentation/sles11/
book_sleha/data/book_sleha.html

• Heartbeat configuration: http://www.linux-ha.org/

• Corosync Configuration: http://www.corosync.org/

http://www.clusterlabs.org/
http://www.clusterlabs.org/wiki/Documentation
http://www.clusterlabs.org/wiki/Documentation
http://www.novell.com/documentation/sles11/book_sleha/index.html?page=/documentation/sles11/book_sleha/data/book_sleha.html
http://www.novell.com/documentation/sles11/book_sleha/index.html?page=/documentation/sles11/book_sleha/data/book_sleha.html
http://www.linux-ha.org/
http://www.corosync.org/

118

119

Appendix J. Revision History
Revision 1 19 Oct 2009 Andrew Beekhof andrew@beekhof.net

Import from Pages.app

Revision 2 26 Oct 2009 Andrew Beekhof andrew@beekhof.net

Cleanup and reformatting of docbook xml complete

Revision 3 Tue Nov 12 2009 Andrew Beekhof andrew@beekhof.net

Split book into chapters and pass validation
Re-organize book for use with Publican1

mailto:andrew@beekhof.net
mailto:andrew@beekhof.net
mailto:andrew@beekhof.net
https://fedorahosted.org/publican/

120

121

Index
F
feedback

contact information for this manual, xvi

122

	Configuration Explained
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Read-Me-First
	1.1. The Scope of this Document
	1.2. What Is Pacemaker?
	1.3. Types of Pacemaker Clusters
	1.4. Pacemaker Architecture
	1.4.1. Internal Components

	Chapter 2. Configuration Basics
	2.1. Configuration Layout
	2.2. The Current State of the Cluster
	2.3. How Should the Configuration be Updated?
	2.4. Quickly Deleting Part of the Configuration
	2.5. Updating the Configuration Without Using XML
	2.6. Making Configuration Changes in a Sandbox
	2.7. Testing Your Configuration Changes
	2.8. Do I Need to Update the Configuration on all Cluster Nodes?

	Chapter 3. Cluster Options
	3.1. Special Options
	3.1.1. Configuration Version
	3.1.2. Other Fields
	3.1.3. Fields Maintained by the Cluster

	3.2. Cluster Options
	3.2.1. Available Cluster Options
	3.2.2. Querying and Setting Cluster Options
	3.2.3. When Options are Listed More Than Once

	Chapter 4. Cluster Nodes
	4.1. Defining a Cluster Node
	4.2. Describing a Cluster Node
	4.3. Adding a New Cluster Node
	4.3.1. Corosync
	4.3.2. Heartbeat

	4.4. Removing a Cluster Node
	4.4.1. Corosync
	4.4.2. Heartbeat

	4.5. Replacing a Cluster Node
	4.5.1. Corosync
	4.5.2. Heartbeat

	Chapter 5. Cluster Resources
	5.1. What is a Cluster Resource
	5.2. Supported Resource Classes
	5.2.1. Open Cluster Framework
	5.2.2. Linux Standard Base
	5.2.3. Legacy Heartbeat

	5.3. Properties
	5.4. Resource Options
	5.5. Setting Global Defaults for Resource Options
	5.6. Instance Attributes
	5.7. Resource Operations
	5.7.1. Monitoring Resources for Failure

	5.8. Setting Global Defaults for Operations
	5.8.1. When Resources Take a Long Time to Start/Stop
	5.8.2. Multiple Monitor Operations
	5.8.3. Disabling a Monitor Operation

	Chapter 6. Resource Constraints
	6.1. Scores
	6.1.1. Infinity Math

	6.2. Deciding Which Nodes a Resource Can Run On
	6.2.1. Options
	6.2.2. Asymmetrical "Opt-In" Clusters
	6.2.3. Symmetrical "Opt-Out" Clusters
	6.2.4. What if Two Nodes Have the Same Score

	6.3. Specifying the Order Resources Should Start/Stop In
	6.3.1. Mandatory Ordering
	6.3.2. Advisory Ordering

	6.4. Placing Resources Relative to other Resources
	6.4.1. Options
	6.4.2. Mandatory Placement
	6.4.3. Advisory Placement

	6.5. Ordering Sets of Resources
	6.6. Collocating Sets of Resources

	Chapter 7. Receiving Notification of Cluster Events
	7.1. Configuring Email Notifications
	7.2. Configuring SNMP Notifications

	Chapter 8. Rules
	8.1. Node Attribute Expressions
	8.2. Time/Date Based Expressions
	8.2.1. Date Specifications
	8.2.2. Durations
	8.2.2.1. Sample Time Based Expressions

	8.3. Using Rules to Determine Resource Location
	8.3.1. Using score-attribute Instead of score

	8.4. Using Rules to Control Resource Options
	8.5. Using Rules to Control Cluster Options
	8.6. Ensuring Time Based Rules Take Effect

	Chapter 9. Advanced Configuration
	9.1. Connecting to the Cluster Configuration from a Remote Machine
	9.2. Specifying When Recurring Actions are Performed
	9.3. Moving Resources
	9.3.1. Manual Intervention
	9.3.2. Moving Resources Due to Failure
	9.3.3. Moving Resources Due to Connectivity Changes
	9.3.3.1. Tell Pacemaker to monitor connectivity
	9.3.3.2. Tell Pacemaker how to interpret the connectivity data

	9.3.4. Resource Migration
	9.3.4.1. Migration Checklist

	9.4. Reusing Rules, Options and Sets of Operations
	9.5. Reloading Services After a Definition Change

	Chapter 10. Advanced Resource Types
	10.1. Groups - A Syntactic Shortcut
	10.1.1. Properties
	10.1.2. Options
	10.1.3. Using Groups
	10.1.3.1. Instance Attributes
	10.1.3.2. Contents
	10.1.3.3. Constraints
	10.1.3.4. Stickiness

	10.2. Clones - Resources That Should be Active on Multiple Hosts
	10.2.1. Properties
	10.2.2. Options
	10.2.3. Using Clones
	10.2.3.1. Instance Attributes
	10.2.3.2. Contents
	10.2.3.3. Constraints
	10.2.3.4. Stickiness
	10.2.3.5. Resource Agent Requirements
	10.2.3.6. Notifications
	10.2.3.7. Proper Interpretation of Notification Environment Variables

	10.3. Multi-state - Resources That Have Multiple Modes
	10.3.1. Properties
	10.3.2. Options
	10.3.3. Using Multi-state Resources
	10.3.3.1. Instance Attributes
	10.3.3.2. Contents
	10.3.3.3. Monitoring Multi-State Resources
	10.3.3.4. Constraints
	10.3.3.5. Stickiness
	10.3.3.6. Which Resource Instance is Promoted
	10.3.3.7. Resource Agent Requirements
	10.3.3.8. Notifications
	10.3.3.9. Proper Interpretation of Notification Environment Variables

	Chapter 11. Protecting Your Data - STONITH
	11.1. Why You Need STONITH
	11.2. What STONITH Device Should You Use
	11.3. Configuring STONITH
	11.3.1. Example

	Chapter 12. Status - Here be dragons
	12.1. Node Status
	12.2. Transient Node Attributes
	12.3. Operation History
	12.3.1. Simple Example
	12.3.2. Complex Resource History Example

	Appendix A. FAQ
	Appendix B. More About OCF Resource Agents
	B.1. Location of Custom Scripts
	B.2. Actions
	B.3. How Does the Cluster Interpret the OCF Return Codes?
	B.3.1. Exceptions

	Appendix C. What Changed in 1.0
	C.1. New
	C.2. Changed
	C.3. Removed

	Appendix D. Installation
	D.1. Choosing a Cluster Stack
	D.2. Enabling Pacemaker
	D.2.1. For Corosync
	D.2.2. For Heartbeat

	Appendix E. Upgrading Cluster Software
	E.1. Version Compatibility
	E.2. Complete Cluster Shutdown
	E.2.1. Procedure

	E.3. Rolling (node by node)
	E.3.1. Procedure
	E.3.2. Version Compatibility
	E.3.3. Crossing Compatibility Boundaries

	E.4. Disconnect and Reattach
	E.4.1. Procedure
	E.4.2. Notes

	Appendix F. Upgrading the Configuration from 0.6
	F.1. Preparation
	F.2. Perform the upgrade
	F.2.1. Upgrade the software
	F.2.2. Upgrade the Configuration
	F.2.3. Manually Upgrading the Configuration

	Appendix G. Is This init Script LSB Compatible?
	Appendix H. Sample Configurations
	H.1. An Empty Configuration
	H.2. A Simple Configuration
	H.3. An Advanced Configuration

	Appendix I. Further Reading
	Appendix J. Revision History
	Index

